ZytoLight
CEN 10 Probe

REF Z-2079
\(\Box 20 \text{ (0.2 ml)} \)

For the detection of human alpha-satellites of chromosome 10 by fluorescence *in situ* hybridization (FISH)

For research use only
Fluorescence-labeled polynucleotide probe for the detection of human alpha-satellites of chromosome 10 centromeres, ready to use

Product Description

Content: 0.2 ml (20 reactions) ZytoLight CEN 10 Probe (PL38) in hybridization buffer. The probe contains orange-labeled polynucleotides (ZyOrange: excitation at 547 nm and emission at 572 nm, similar to rhodamine), which target alpha-satellite-sequences of the centromere of chromosome 10.

Product No.: Z-2079

Specificity: The ZytoLight CEN 10 Probe (PL38) is designed to be used for the detection of chromosome 10 alpha-satellites in formalin-fixed, paraffin-embedded tissue or cells by fluorescence in situ hybridization (FISH).

Storage/Stability: The ZytoLight CEN 10 Probe (PL38) must be stored at -16 – -22°C in the dark (short-time storage at 2-8°C is possible) and is stable through the expiry date printed on the label.

Use: This product is designed for research purposes only and not for use in diagnostic applications.

Safety Precautions: Read the operating instructions prior to use!

Do not use the reagents after the expiry date has been reached!

This product contains substances (in low concentrations and volumes) that are harmful to health. Avoid any direct contact with the reagents. Take appropriate protective measures (use disposable gloves, protective glasses, and lab garments). The following risk and safety phrases...
Principle of the Method

The presence of certain nucleic acid sequences in cells or tissue can be detected by *in situ* hybridization using labeled DNA probes. The hybridization results in duplex formation of sequences present in the test object with the labeled DNA probe.

Duplex formation (with sequences of chromosome 10 alpha-satellites in the test material) is directly detected by using the tags of fluorescence-labeled polynucleotides.
Instructions

Pretreatment (dewaxing, proteolysis, post-fixation) should be carried out according to the needs of the user.

Denaturation and hybridization of probe:

1. Pipette 10 µl ZytoLight CEN 10 Probe (PL38) each onto individual samples

 A gentle warming of the probe, as well as using a pipette tip which has been cut off to increase the size of the opening, can make the pipetting process easier. Avoid long exposure of the probe to light.

2. Avoiding trapped bubbles, cover the samples with a coverslip (22 mm x 22 mm). Seal the coverslip, e.g. with a layer of hot glue from an adhesive pistol or with rubber cement

3. Denature the slides at 75°C (±2°C) for 10 min, e.g. on a hot plate

 Depending upon the age of the sample and variations in the fixation stage, it may be necessary to optimize the denaturing temperature (73°C-77°C).

4. Transfer the slide to a humidity chamber and hybridize overnight at 37°C (e.g. in a hybridization oven)

 It is essential that the tissue/cell samples do not dry out during the hybridization step.

Further processing, such as washing and counter-staining, can be completed according to the user’s needs. For a particularly user-friendly performance, we recommend the use of a ZytoLight FISH system by ZytoVision. These systems were also used for the confirmation of appropriateness of the ZytoLight CEN 10 Probe (PL38).
Results

With the use of appropriate filter sets, the hybridization signals of labeled alpha-satellite-sequences of the centromere of chromosome 10 appear orange. In interphases of normal cells or cells without aberrations of chromosome 10, two chromosome 10 signals appear. In cells with an aneuploidy of chromosome 10, a different signal pattern is visible in interphases.

In order to judge the specificity of the signals, every hybridization should be accompanied by controls. We recommend using at least one control sample in which the chromosome 10 copy number is known.

Care should be taken not to evaluate overlapping cells, in order to avoid false results, e.g. an amplification of genes. Due to decondensed chromatin, single FISH signals can appear as small signal clusters. Thus, two or three signals of the same size, separated by a distance equal to or less than the diameter of one signal, should be counted as one signal.

Our experts are available to answer your questions.
Literature

As of: October 1, 2008 (4.0)

Trademarks:
ZytoVision® and ZytoLight® are trademarks of ZytoVision GmbH.