

Champion™

Competent Cell

For Research Use Only

Mix then Spread

High Efficiency M Easy to Use

Table of Contents

. Product Information	
(1) General information	2
(2) Kit contents	2
(3) Shipping condition	2
(4) Storage and expiration	2
(5) Items and ordering information	3
(6) Genotypes and applications	4
. Transformation Protocols	
(1) Time-saving transformation protocol for Champion $^{\mathrm{IM}}$ Competent Cells \cdots	5
(2) Diagram of time-saving transformation protocol	6
. Quality Control	7
. Factors Affecting Transformation Efficiency	8
. SMOBIO Cloning Tools	10

General information

Champion™ Competent Cells are chemically competent cells, which were prepared by SMOBIO to make *E. coli* perform excellent transformation efficiency. Standard transformation protocol is recommended for large plasmids or non-ampicillin selection. Time-saving transformation protocol is recommended for simple and rapid transformation. Champion™ Competent Cells are one of the fastest and simplest ready-to-use competent cell products in the world.

Kit contents

- (1) Champion™ Competent Cells
- (2) pUC19 Control Plasmid (5 μ l, 10⁻⁴ μ g/ μ l)
- (3) Champion™ Transformation Protocol Card

Shipping condition

Throughout the shipping process, the temperature is maintained under -70°C.

Storage and expiration

Champion™ Competent Cells must be stored between -70°C to -80°C. Subsequent freeze-thaw cycles will reduce transformation efficiency. If high efficiency is required for the experiment, do not use aliquots that have gone through several freeze-thaw cycles. The efficiency of Champion™ Competent Cells lasts for 1 year with proper storage.

Items and ordering information

Product Name	Compatible to E. coli strain	Efficiency (cfu/μg)	Quantity	Cat. No.
Champion IM 100 High	E. coli JM109	9 >1 x 10 ⁸	100 μl x 80 vials	CC0202
Champion™ 109 High			100 μl x 24 vials	CC0204
Champion™ 21	Champion™ 21 E. coli BL21 (DE3)	>1 x 10 ⁷	100 μl x 80 vials	CC2102
Champion 21			100 μl x 24 vials	CC2104
Champion™ DH5α High	E. coli DH5α	>3 x 10 ⁸	100 μl x 80 vials	CC5202
			100 μl x 24 vials	CC5204

Genotypes and applications

Product Name	Genotype	Application	
Champion™ 109 High	e14($McrA^-$) $recA1$ endA1 $gyrA96$ $hsdR17(n_c^-, m_c^+)$ $phoA$ $supE44$ $thi-1$ $relA1$ $\Delta(lac-proAB)$ (F' $traD36$ $proAB$ $laci$ * $Z\DeltaM15$	Appropriate for blue-white color and robotic screening. It is a fast growing strain forming visible colonies within 8~10 hours.	
Champion™ 21	$F' \ omp T \ \textit{hsdS}_{\beta}(r_{\beta} \ m_{\beta} \) \ \textit{dcm gal} \ \lambda \ (DE3)$	Appropriate host for recombinant protein expression using T7-based expression vectors.	
recA1 endA1 gyrA96 hsdR17(rc, m Champion™ DH5α High phoA supE44 relA1 thi-1 Δ(lacZYA- argF)U 169 φ80 Δ(lacZ)M15 F'		Suitable for cloning with large plasmid and cDNA library construction, and also for bluewhite colony selection.	

4

Time-saving transformation protocol for Champion™ Competent Cells

- Quickly thaw -70°C stored competent cells with hand (body temperature) for 10~20 seconds, then keep thawed competent cells on ice.
- Add DNA (ex. ligation products) to cells, keep volume of DNA less than 10% of competent cell volume.
- Vortex 1 sec or tap on the tube with finger to mix well.
- 4. Incubate on ice for 0~10 mins. (The ice-incubation will slightly increase efficiency.) *
- Plate the bacteria/DNA mixture onto a pre-warmed (room temperature to 37°C) selective LB agar plate (LB + antibiotic).
- 6. Incubate the plates at 37°C until the colonies are suitable for analysis.
- * Notice: For large plasmid (>6 Kb) or non-ampicillin selection, steps below are highly recommended to be added between step 4 and 5.
 - a. Heat shock the competent cells at 42°C for 45~90 seconds.
 - b. Incubate on ice for 1~5 mins.
 - c. Add 900 μ I LB or SOC medium to the competent cells and incubate at 37°C for 30~60 mins with a 200 rpm shaking.

Time-saving transformation protocol for Champion™ Competent Cells

Notice: the antibiotics concentration for Champion™ Competent Cells

Ampicillin (Ap)	20 μg/ml
Kanamycin (Km)	25 μg/ml
Tetracycline (Tc)	7.5 µg/ml
Chloramphenicol (Cm)	20 μg/ml

Quality Control

Efficiency assay

The transformation efficiency of each batch of Champion™ Competent Cells is greater than that described in "Items and ordering information" at the time of production. The transformation efficiency is determined following time-saving transformation protocol with incubation on ice for 5 mins.

Calculation of transformation efficiency is as follows:

- a. Equation for transformation efficiency= transformed colonies (transformants)/ μg of plasmid.
- b. Example: $100 \,\mu$ I of competent cells have been transformed with $10^6 \,\mu$ g of pUC19 plasmid. If 550 colonies are observed on the selective plate. The transformation efficiency is: $550/10^6$ =5.5x108 transformants/ μ g of pUC19 plasmid.

Contamination assay

No colony on the LB agar plate with $20^{\sim}50~\mu g/ml$ of ampicillin when transformation is performed without plasmid.

α-Complementation assay

The ratio of the white colonies/ white & blue colonies of the tested plate is less than 3% (for Champion™ 109 High, and Champion™ DH5α high)

Factors Affecting Transformation Efficiency

Thawing methods

Shorter thawing time is more efficient than a longer thawing time. Slow thawing caused by power shortages and unstable freezers will result in decreased efficiency.

Methods of mixing DNA with competent cells

A one-second vortex provides more reliable transformation efficiency (1.1 times compared with mixing by a finger tap).

Size of plasmid

Plasmid size is known to affect the efficiency greatly. For instance, the efficiency of a supercoiled 2.7 kb and a 10 Kb plasmid (using time-saving transformation protocol) has a difference of approximately 100 times. For large plasmids (> 6 kb), the heat shock method and the recovery procedure as shown in the standard transformation protocol will improve the efficiency.

Heat shock treatment

For large plasmids (> 6kb), transformation efficiency with heat shock treatment will be nearly double to that without heat-shock treatment.

8

Plating methods

Bent glass rods show the greatest efficiency, while plating loop shows less efficiency than plating beads. When handling a large quantity of samples at the same time, plating beads are recommended.

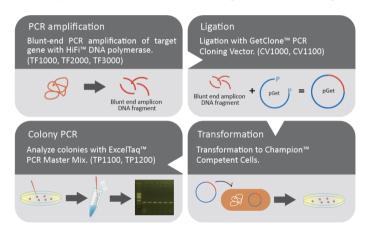
Concentration of antibiotic

Antibiotic concentration is critical to use of the time-saving transformation protocol.

(1) For ampicillin

The recommended concentration is 20 μ g/ml for fresh ampicillin (Ap) and 50 μ g/ml for old Ap. If a higher concentration (50~100 μ g/ml) is used, the efficiency will reduce by 3~10 times.

(2) For other antibiotics


25 μg/ml Kanamycin; 7.5 μg/ml Tetracycline; 20 μg/ml Chloramphenicol.

For plasmid size <6 Kb, the efficiency of kanamycin selection is usually $3^{\sim}10$ times less than the ampicillin selection. For plasmid size > 6 Kb, the efficiency of kanamycin selection is much lower than ampicillin. We suggest using the standard transformation protocol (with heat shock and recovery steps) to enhance the efficiency.

9

Fast and easy method for plasmid construction using SMOBIO smart cloning tools

More technical information can be found by visiting our website: http://www.smobio.com/Support.html