MPCR Kit for Human MMP Genes Set-2
Cat No. MP-70186: 50 reactions
Cat No. MP-70185: 100 reactions

*These products are designed and sold for use in the Multiplex PCR (MPCR) covered by patent #5,392,969. Use of the MPCR process requires a license. A limited, non-automated research field license under the patent to use only this amount of the product to practice the MPCR process is conveyed to the purchaser by the purchase of this product.

The Polymerase Chain Reaction (PCR) process is covered by patents owned by Hoffman-LaRoche. Use of the PCR process requires a license. A license for diagnostic purposes may be obtained from Roche Molecular Systems. A license for research may be obtained by the purchase and the use of authorized reagents and DNA thermocyclers from the Perkin-Elmer Corporation or by negotiating a license with Perkin-Elmer.

This product is intended for research use only and not for diagnostic purposes.
INTRODUCTION

The matrix metalloproteinases (MMPs) are mediators of structural protein degradation during turnover of the extracellular matrix. During normal tissue remodeling such as wound healing, bone resorption, and morphogenesis, MMPs are accurately produced and precisely targeted to specific extracellular substrates by a wide variety of cells. Atypical production of MMP is thought to contribute to progression of many destructive diseases, such as arthritis and chronic ulcers, and disease-related processes, such as inflammatory tissue destruction and remodeling. Overexpression of MMPs also may play important roles in tumor metastasis and invasion, and angiogenesis.

MMPs are synthesized as zymogens. Activation is achieved by autolysis or other proteinases. Early studies suggest that most cell-derived neutral proteases such as trypsin and chymase activate MMPs. These studies also demonstrated that trypsin activated only pMMP3 which in turn was able to activate pMMP-9 (1).

A major goal of the wound healing process is the restoration of functional connective tissue. During normal wound repair controlled proteolysis is needed for cell migration, angiogenesis, and matrix remodeling. This requires the deposition and accumulation of collagenous and noncollagenous matrix molecules as well as the restructuring of extracellular matrix (ECM) by MMPs. Using in situ hybridization and immunohistochemistry, investigators have found that MMP-1, MMP-3 and MMP-10 were expressed in keratinocytes bordering both acute and chronic wounds. Unlike MMP-1, signal for MMP-13 was not detected in keratinocytes but exclusively in fibroblasts deep in the ulcer bed of chronic wounds. These results suggested that MMP-1 production is important for cell migration and that MMP-13 plays a role in matrix remodeling (Saarialho-Kere UK).

MMPs have also been implicated in the pathogenesis of various inflammatory diseases of the central nervous system. Evidence is accumulating that several MMPs might be involved in the pathogenesis of meningitis. MMP3 and MMP13 mRNAs have been shown to be selectively upregulated in experimental meningococcal meningitis. In contrast, mRNA levels for MMPs 2, 7, 10, and 11 remained unchanged. These data suggest that MMP3 and MMP13 may contribute to the pathogenesis of this infectious disease of the central nervous system (2).

MMPs are also involved in tumor invasion and metastasis (3). MMP-7 is one matrix metalloproteinase that plays a critical role in tumor invasion, and is often expressed in gastrointestinal cancers MMP-13 was originally identified in breast carcinomas and subsequently detected during fetal ossification and in arthritic processes. With tumor progression, the number of different MMPs that can be detected tends to increase. Also the relative levels of individual MMP family member tends to increase with tumor progression. Although a major function of MMPs in metastasis is to facilitate the breakdown of ECM, MMPs also play a significant role in regulating angiogenesis. Successful angiogenesis is dependent upon extracellular proteolysis provided by MMPs.

Cytokines, growth factor, hormones, oncogenes, and tumor promoters play important roles in the transcriptional regulation for most of the MMP family members. In addition, there is evidence for regulation at the level of mRNA stability. Analysis of the temporal and spatial distribution of RNA expression can provide researchers with important clues about the function of these cytokines within their own systems (4). Northern Blot and RNase Protection Assay are the most widely used procedures for determining the abundance of a specific mRNA in a total or poly(A) RNA sample. RT-PCR provides an alternate and accurate method to detect multiple gene expression by amplifying all the genes under the same conditions (5, 6, 7). Variations in RNA isolation, initial quantitation errors or tube-to-tube variations in RT and PCR can be compensated by including a housekeeping gene, such as GAPDH or beta-actin, in PCR. Alternatively, a parallel RT-PCR using the same cDNA, PCR conditions and primers for one of house-keeping genes may be run to offset any variations (6, 7). Differences in gene expression can be determined by normalizing its expression against beta-actin or GAPDH expression.

This matrix metalloproteinase (MMP) genes superfamily set-2 MPCR kit has been designed to detect the expression of human MT-MMP-1, MMP-1, TIMP-1 and 18S genes. The PCR primers have similar Tm and no obvious 3'-end overlap to enhance multiple amplification. The 550 bp (H185), 395 bp (MMP-1), 265 bp (TIMP-13), and 223 bp (MT-MMP-1) PCR products can be generated from human RNA or the positive control, which is included in this kit. Therefore, this MMPs Set-2 MPCR kit provides a quick and simple method to analyze human MT-MMP-1, MMP-1, TIMP-1 genes expression, and normalize their expression against 18S expression.
I: Radioactive Quantitation

In our experience, visual inspection of an EtBr-stained agarose gel is sensitive and precise enough to detect changes as low as two-fold. If greater discrimination is necessary, several methods are available. The simplest procedure is to add a radiolabeled dNTP to the PCR reaction. After gel analysis, the band may be excised and counted in a scintillation counter. Alternatively, the gel may be dried and an autoradiogram may be generated which can be scanned in a densitometer. Another method is to label the 5’ end of one or both of the primers with 32P, which is incorporated into the PCR products and then assayed for radioactivity (9).

Southern blot hybridization with synthetic DNA probes may also be performed to verify and quantify PCR generated products, either by densitometry of an autoradiogram or by excising and counting the signal from a hybridization membrane. This method also quantitates only the target product without interference from nontarget products or primer-generated artifacts.

II: Non-Radioactive Quantitation

Nonradioactive quantitation methods include the use of biotinylated or digoxigenin-labeled primers in conjunction with the appropriate detection methods (10), use of a bioanalyzer or WAVE. For an in-depth discussion of the various methods of PCR product quantitation, refer to the review article by Bloch (11).

In addition to the above methods, several companies now offer gel video systems which can scan and quantitate EtBr-stained gel bands in much the same way a densitometer does. Lab-on-a-chip (BioAnalyzer), CE, HPLC, and WAVE may also be used to analyze MPCR products and quantitate simultaneously.

MPCR
(Multiplex Polymerase Chain Reaction)

- √ Non-isotope method with high sensitivity
 0.1-1μg total RNA per MPCR
- √ Whole process takes only a few hours
- √ Detect Multiple Genes Simultaneously & Quantitatively
- √ Signal can be quantified directly from gel if isotope is included in MPCR.
 Additional techniques can be used to quantify MPCR product (using Bioanalyzer, HPLC, and WAVE.)
- √ Non-specific products can be eliminated by using probes and southern hybridization.
- √ Ready-to-use

RPA
(RNase Protection Assay)

- √ Isotope or Non-Isotope methods
 1-20 μg total RNA per RPA assay
- √ Whole process takes two days
- √ Detect Multiple Genes Simultaneously & Quantitatively
- √ Signal can be quantified directly from gel
- √ Non-specific signal can be generated by either low stringent conditions or high-secondary-structure template.
- √ Make own "hot" RNA probes
MPCR KIT DESCRIPTION

MPCR Amplification Kits include all necessary MPCR amplification reagents with the exception of Taq Polymerase. These kits have been designed to direct the simultaneous amplification of specific regions of human DNA.

MPCR Kits come in two quantities:
- 50X 50μL reaction kits
- 100X 50μL reaction kits

Each kit offers Maxim’s optimal primer/buffer system which will enhance amplification specificity.

Figure 1 shows quality control MPCR results obtained by following MPCR kit manual using different concentrations of positive control.

For optimal results, please read and follow the instructions in this manual carefully. If you have any questions, please contact Maxim Biotech Customer Service at (650) 871-1919.

![Figure 1](image)

Lane 1: Negative control (without Positive)
Lane 2: MPCR Primers with 0.25 X Positive
Lane 3: MPCR Primers with 0.5 X Positive
Lane 4: MPCR Primers with 1 X Positive
Lane M: 100 bp DNA M.W. Marker

MPCR PRIMER INFORMATION

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Gene</th>
<th>5'/3' Tm</th>
<th>Amplicon Size</th>
<th>Accession No.</th>
<th>Intron Span</th>
<th>Genomic Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>hMMP2S-MTMMMP1</td>
<td>Human MT-MMP-1</td>
<td>68°C/70°C</td>
<td>223bp</td>
<td>U41078</td>
<td>yes</td>
<td>711bp</td>
</tr>
<tr>
<td>hMMP2S-MMP1</td>
<td>Human MMP-1</td>
<td>68°C/69°C</td>
<td>395bp</td>
<td>BC013875</td>
<td>yes</td>
<td>4466bp</td>
</tr>
<tr>
<td>hMMP2S-TIMP1</td>
<td>Human TIMP-1</td>
<td>70°C/68°C</td>
<td>265bp</td>
<td>XM_033878</td>
<td>yes</td>
<td>1855bp</td>
</tr>
<tr>
<td>hMMP2S-18S</td>
<td>Human 18S</td>
<td>71°C/71°C</td>
<td>554bp</td>
<td>X03205</td>
<td>no</td>
<td>554bp</td>
</tr>
</tbody>
</table>
KIT COMPONENTS

MP-70186
50X50μL MPCR reaction kit
Store all reagents at -20°C

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Kit Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>hMMP2S-B001</td>
<td>2X hMMP2S MPCR Buffer (containing chemicals, enhancer, stabilizer and dNTPs)</td>
<td>1250μl</td>
</tr>
<tr>
<td>hMMP2S-C001</td>
<td>10X hMMP2S Pos. Control</td>
<td>50μl</td>
</tr>
<tr>
<td>hMMP2S-P001</td>
<td>10X hMMP2S MPCR Primers</td>
<td>250μl</td>
</tr>
<tr>
<td>MRB-0014</td>
<td>DNA M.W. Marker (100 bp ladder)</td>
<td>100μl</td>
</tr>
<tr>
<td></td>
<td>ddH₂O (DNase free)</td>
<td>2.0ml</td>
</tr>
<tr>
<td></td>
<td>Instruction Manual</td>
<td></td>
</tr>
</tbody>
</table>

MP-70185
100X50μL MPCR reaction kit
Store all reagents at -20°C

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Kit Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>hMMP2S-B001</td>
<td>2X hMMP2S MPCR Buffer (containing chemicals, enhancer, stabilizer and dNTPs)</td>
<td>1250μl X2</td>
</tr>
<tr>
<td>hMMP2S-C001</td>
<td>10X hMMP2S Pos. Control</td>
<td>50μl X2</td>
</tr>
<tr>
<td>hMMP2S-P001</td>
<td>10X hMMP2S MPCR Primers</td>
<td>250μl X2</td>
</tr>
<tr>
<td>MRB-0014</td>
<td>DNA M.W. Marker (100 bp ladder)</td>
<td>100μl X2</td>
</tr>
<tr>
<td></td>
<td>ddH₂O (DNase free)</td>
<td>2.0ml X2</td>
</tr>
<tr>
<td></td>
<td>Instruction Manual</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: SPIN ALL TUBES BEFORE USING!!
RT Protocol:

The isolation of undegraded, intact RNA is an essential prerequisite for successful first strand synthesis and PCR amplification. Care should be taken to avoid RNase contamination of buffers and containers used for RNA work by pretreating with DEPC, autoclaving, and baking. Always wear sterile gloves when handling reagents. Use cDNA derived from 10⁶ cells (1 mg cDNA) and apply them to each MPCR reaction.

1. Prepare total RNA, mRNA or use the control GAPDH RNA which is provided in Maxim's MPCR kit. **NOTE:** It is best to use cDNA derived from 0.5-1 x 10⁶ cells (0.5-1mg cDNA derived from RNA) for each MPCR reaction.

2. Equilibrate water baths: 37°C, 70°C and 95°C.

3. **On ice,** pipet 1-2 mg mRNA or 10 μg total RNA (from 10⁶ cells) dissolved in pure water or 2 ml control GAPDH RNA into a RNAase free reaction vial. We strongly recommend including a positive control reaction when setting up an RT-PCR reaction for the first time.

4. Add sterile water to a final volume of 14.5 μl.

5. Add 4 μl random hexamer (50 mM) or Oligo(dT) (50 mM).

NOTE: The hexamer and Oligo(dT) RT reactions may be run simultaneously.

6. Incubate tube(s) at 70°C for 5 minutes and quickly chill on ice.

7. Begin your RT reaction by adding the following reagents to your hexamer or Oligo mixture:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Description</th>
<th>Volume per Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase Inhibitor</td>
<td>130 U/μl</td>
<td>0.5 μl</td>
</tr>
<tr>
<td>5 X RT buffer</td>
<td>250 mM Tris-HCl (pH 8.3)</td>
<td>10 μl</td>
</tr>
<tr>
<td>dNTPs</td>
<td>375 mM KCl, 15 mM MgCl₂, 50 mMMDTT</td>
<td>20 μl</td>
</tr>
<tr>
<td>MMLV RT</td>
<td>1 mM each</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 U/μl</td>
<td>1 μl</td>
</tr>
</tbody>
</table>

8. Incubate the RT mixture at 37°C for 60 minutes.

9. Then, heat RT mixture at 95°C for 10 minutes and quickly chill on ice.

10. Add another 50 μl water or 0.1X TE buffer.

11. 2-5 μl of above cDNA is sufficient for most genes in a standard MPCR reaction. However, more or less DNA may be needed in PCR depending on the copy number of the specific gene.

PCR Protocol:

1. **Taq** DNA polymerase from Perkin-Elmer or its derivatives are highly recommended for MPCR. Ampli-Taq Gold, however, is not recommended because its own optimal buffer system is required.

2. **Reaction Mixture Preparation:**

 A. Set up MPCR reactions with the test samples and MPCR buffers provided in the MPCR kit according to the table below:
Volume (Per assay) | Reagent (Add in order)
--- | ---
25.0 µl | 2X MPCR BufferMixture
5.0µl | 10X MPCR Primers
0.5µl | Taq DNA Polymerase(5U/ml)
5.0µl | Specimen cDNA or
14.5µl | 10X Control cDNA from kit
50.0µl | H2O

*: ³²P dNTPs may be used here to achieve higher sensitivity and better quantitation. 5-10 µCi [³²P]dCTP (3000 Ci/m mole) should be used here per MPCR. Keep final dNTPs concentration same as without ³²P-dNTPs.

B. EDTA concentration in test sample must not exceed 0.5 mM because Mg²⁺ concentration in MPCR Buffers is limited to certain ranges. Additional Mg²⁺ may be added to the PCR mixture to compensate for EDTA. We strongly recommend running an MPCR reaction with the positive control provided in the kit. Since the MPCR DNA polymerase needed in each reaction is in a very small volume, it is recommended that all of the PCR components be premixed in a sufficient quantity for daily needs and then dispensed into individual reaction vials. This will help you to achieve more accurate measurements.

3. PCR thermocycle profile:

Reaction profiles will need to be optimized according to the machine type and needs of user. Please take note that temperature variations occur between different thermocyclers, therefore, the annealing temperature in the sample profile below is given as a range. It will be necessary to determine the optimal temperature for your individual thermocycler. An example of a time-temperature profile for the positive control PCR reaction optimized for Perkin Elmer machine types 480, 2400, and 9600 is provided below:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>96°C</td>
<td>1 min</td>
<td>2X</td>
</tr>
<tr>
<td>58-60°C</td>
<td>4 min</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>1 min</td>
<td>28-35X</td>
</tr>
<tr>
<td>58-60°C</td>
<td>2 min</td>
<td></td>
</tr>
<tr>
<td>70°C</td>
<td>10 min</td>
<td>1X</td>
</tr>
<tr>
<td>25°C</td>
<td>soak</td>
<td></td>
</tr>
</tbody>
</table>

*Note: A 2-step PCR thermocycle profile was found to be more effective than a 3-step PCR thermocycle profile for MPCR amplification. For 2-step PCR, use 94-95°C for denaturation and 58-60°C for annealing and extension. The 72°C step is omitted.

4. Agarose Gel Electrophoresis:

To fractionate the MPCR DNA product electrophoretically, mix 10µl of the MPCR product with 2µl 6X loading buffer. Run the total 12µl alongside 10 µl of DNA marker from the MPCR kit on a 2% agarose gel containing 0.5 mg/ml ethidium bromide. Electrophorese and photograph. *(Hint: Best results are obtained when the gels are run slowly at less than 100 volts).*
1. MPCR AMPLIFICATION

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible Cause</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. No signal or missing some bands during amplification even using positive control provided in kit.</td>
<td>1.1a. The annealing temperature in thermocycler is too high.</td>
<td>1.1a. Decrease PCR annealing temperature 3-5°C gradually.</td>
</tr>
<tr>
<td></td>
<td>1.1b. Dominant primer dimers.</td>
<td>1.1b. Use any one of "Hot Start" PCR procedures.</td>
</tr>
<tr>
<td>1.2. Too many nonspecific bands.</td>
<td>1.2a. The annealing temperature in the thermocycler is too low.</td>
<td>1.2a. Increase PCR annealing temperature 3-5°C gradually.</td>
</tr>
<tr>
<td></td>
<td>1.2b. Pre-PCR mispriming.</td>
<td>1.2b. Use any one of "Hot Start" PCR procedures.</td>
</tr>
<tr>
<td></td>
<td>1.2c. cDNA is interfering with MPCR</td>
<td>1.2c. Clean cDNA with Phenol/ Chloroform.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2d. Use Maxim’s 3M™-MPCR Kit.</td>
</tr>
<tr>
<td>1.3. No difference in gene expression among treatments</td>
<td>1.3a. PCR amplification of this specific gene has passed the exponential phase.</td>
<td>1.3a. Decrease PCR cycle number or decrease the input cDNA.</td>
</tr>
<tr>
<td></td>
<td>1.3b. Variation in sample preparation, RT reaction and amounts of input cDNA.</td>
<td>1.3b. Run a parallel PCR with a house-keeping gene to eliminate variables.</td>
</tr>
</tbody>
</table>
Storage

1. Store all MPCR Kit components at -20°C. Under these conditions components of the kit are stable for 1 year.
2. Isolate the kits from any sources of contaminating DNA, especially amplified PCR product.
3. Do not mix MPCR kit components that are from different lots. Each lot is optimized individually.

REFERENCES