There are largely two types of products used in extracting RNA, which are column type and solution type. The advantages of solution type (phenol use) products are that their yield is higher than that of spin type ones and that they can extract a relatively larger quantity of RNA. Although they are inconvenient in that they use phenol and have to go through the process of alcohol PPT(phenol) precipitation), they are economically efficient in extracting RNA. For these reasons, they are preferred by many customers. On the contrary, spin type products do not use phenol and do not have to go through the process of alcohol PPT, so they can extract purer RNA. Regardless they are relatively expensive, they are preferred for convenience and promptness when RNA should be extracted from many samples or quickly. RNA extracted using the two types of products is pure enough to be used in almost all kinds of molecular biology experiments including Northern blot analysis, cDNA synthesis and RT-PCR. However, when electrophoresis is performed on RNA extracted using products above, genomic DNA on the top is occasionally contaminated. This occurs mainly because the optimal cell number suggested by the manufacturers is not observed and, as a result, the overload genomic DNA is not removed sufficiently in the lysis stage. Customers may experiment that many times. Even if genomic DNA is contaminated, it is not a big problem in general experiments but the contamination of genomic DNA can have significant negative influences on important experiments. In order to avoid this problem, the present company developed a RNA extracting kit without genomic DNA contamination. **easy-spin™ (DNA free)** Total RNA Extraction Kit combines the advantages of solution type products and column type ones, removing the inaccuracy of alcohol PPT process in solution type products and enabling the extraction of total RNA within 30 minutes without genomic DNA. The most remarkable characteristics of the easy-spin™ kit is: (1) there is no genomic DNA contamination,(2) there is no alcohol PPT process, and (3) as a result RNA extraction time is less than 30 minutes.

STORAGE AND STABILITY

- **Lysis Buffer**: Store at 4°C, after receiving.
- **Other components**: Store at Room temperature.

APPLICATIONS

- Express messenger RNA research
- Detection Assay : RT-PCR, real time PCR
- RNA hybridization; Northern blotting, microarray

PRODUCT USE LIMITATIONS

PRODUCT WARRANTY AND SATISFACTION GUARANTEE

All products undergo extensive quality control test and are warranted to perform as described when used correctly. Immediately any problems should be reported. Satisfaction guarantee is conditional upon the customer providing full details of the problem to INTRON within 60 days, and returning the product to INTRON for examination.

PREPARING SOLUTION BEFORE USE

- **Common equipment and reagents**: Equipment for disruption and homogenization, including Grinding Jar Set (mortar) - Pipettes and pipette tips - Water bath or heating block - Vortex mixer - Chloroform or bromochloroform - 100% ethanol - Microcentrifuge tubes (1.5 ml) - Microcentrifuge with rotor for 2.0 ml tubes - Ice - Liquid nitrogen - DEPC-treated water or RNase-free water - Other general lab equipments

HOMOGENIZATION TECHNIQUES

- For Tissues : Homogenize tissue samples in 1ml of Lysis Buffer (easy-BLUE™ reagent) per 50-100mg of tissue using a Homogenizer or equivalent. The sample volume should not exceed 10% of the volume of Lysis Buffer used for homogenization.
- For Cells (grown in monolayer) : Lyse cells directly in a culture flask by adding 1ml of Lysis Buffer(easy-BLUE™ reagent) per 3.5cm diameter. An insufficient amount of reagent may result in contamination of the extracted total RNA with DNA and protein.
- For Cells (grown in suspension) : Pellet cells by centrifugation. Lyse cells in this reagent by repetitive pipetting. Washing cells before addition of Lysis Buffer(easy-BLUE™ reagent) should be avoided, because this increases the possibility of RNA degradation. Disruption of some yeast and bacterial cells may require the use of a homogenizer.

PROTOCOL (for Cell)

1. Prepare 1-10x10⁶ cell in 1.5ml tube. Centrifuge it to remove culture media (13,000rpm, 10sec), and add 1ml of Lysis buffer(easy-BLUE™ reagent).

 Note: In case of adherent cell, measure the viable count after trypsin treatment. In case of suspended cell, measure the viable count after centrifugation. Although 1ml of Lysis Buffer is good for the preparation of up to 6-10x10⁶ cell, it is recommended not to exceed 3-5x10⁶ cell because RNA purity will fall with higher cell counts. Besides, in case of adherent cell, we can treat Lysis Buffer in culture flask after removing culture medium, but doing so would waste a large amount of reagents and may result in the loss of harvested cell lysate. In any case, it is recommended to use after treatment of trypsin. Generally speaking, a TTS flask fitted with adherent cells to about 75-80% volume would have 7-8x10⁶ cell. In such case where an exact cell count is difficult to measure, use about 1/3 of volume and come up with an approximated cell count. However, it is always better to keep accurate cell count.

2. Vigorously vortex in room temperature for 10sec.

 Note: This is actual cell lysis stage and is thus important to apply vortex until no clumps are seen. Once the cell is lysed, store it at 4°C. The sample is now stable at 4°C up to a week.

3. Add 200μl of Chloroform and apply vortex.

 Note: Observe the tube before vortexing. When Chloroform is added, one would see a white line being formed just beneath the upper (blue layer) as the chloroform layer moves down. This region contains mixed parts of cell debris, protein, and genomic DNA and RNA. The purpose of adding the chloroform is to separate the phenol layer from aqueous layer and to eventually separate RNA and genomic DNA/protein.

4. After centrifuging the solution at 13,000 rpm (4°C) for 10 min, transfer 400 μl of the upper fluid to an empty 1.5ml tube.

 Note: Centrifugation of the solution creates two phases. The upper aqueous phase contains RNA while the lower phenol layer (blue color) contains denatured protein or cell debris. White sediments are visible between two phases. This interface contains mixtures of protein and genomic DNA. Protein and genomic DNA can be isolated from this interface (Methods available upon request). When pipetting the upper layer, pay attention not to take any white sediments.

5. **Add 400 μl of Binding Buffer and mix it well by pipetting or gently inverting the 2-3 times. Do not centrifuge and leave it for 1min at room temperature.**

6. **Load the upper solution to the column, but do not load the whole upper solution because the maximum volume of the column reservoirs is 800 μl. After loading the optimum of the upper solution to the column, and centrifuging at 13,000rpm for 30sec. Discard the flow-through after centrifuging and place the spin column back in the same 2ml collection tube. And then repeat this step.**

 Note: The maximum volume of the column reservoirs is 800 μl. For same volume or larger volume, reload the remained sample in the column and spin again.

7. **Add 700 μl of Washing Buffer A to the column. Close the tubes gently, and centrifuge for 30 sec at 13,000rpm to wash the column. Discard the flow-through and place the spin column back in the same 2ml collection tube.**

8. **Wash by adding 700μl of Washing Buffer B to the column and centrifuge for 30 sec at 13,000rpm. Discard the filtrates and place the spin column back in the same 2ml collection tube.**

 Note: Washing Buffer B is supplied as a concentrate. Ensure that ethanol is added to Washing Buffer B before use.

9. **Centrifuge for 1-2 min at 13,000 rpm to dry the column membrane.**

 Note: It is important to dry the column membrane since residual ethanol may interfere the downstream reactions.

10. **Place the column in a clean 1.5ml microcentrifuge tube (not provided), and add 50 μl of Elution Buffer directly onto the membrane. Incubate at RT for 5min, and centrifuge for 1min at 13,000rpm to elute.**
Total RNA Extraction | Apr. 2014 (2nd Edition)

ISO 9001 / 14001 Certified Company

PROTOCOL (for Tissue)

1. Preparation of 50-100 mg of fresh tissue.
2. Add 1 ml of Lysis Buffer (easy-BLUE™ reagent) and homogenize tissue sample using a homogenizer or equivalent. Note: Homogenize tissue samples in 1 ml of Lysis Buffer per 50-100 mg of tissue using a homogenizer or equivalent. The sample volume should not exceed 10% of the volume of Lysis Buffer used for homogenization.
3. For preparation of RNA from tissue, follow step 2 of protocol (for cells).

EXPERIMENT INFORMATIONS

- Total RNA preparation with several companies’ products

 easy-spin™ (DNA free) Total RNA Extraction Kit is provides a simple and rapid method for the isolation of total RNA from cultured cells and tissues

- Effectively removing gDNA using the easy-spin™ Kit

Fig. 1. Gel Analysis of Total RNA isolated from several companies’ products

Total RNA was purified from several companies’ products using the solution and spin type products. And then total RNA was analyzed in gel electrophoresis. 2 μl of eluted solution was loaded per lane on a 1.0% agarose gel.

Lane M, Kko ladder Maker; Lane 1, easy-BLUE™ Kit; lane 2, easy-spin™ Kit; lane 3, Supplier A (solution type); lane 4, Supplier B (spin type)

- RT-PCR Result

Fig. 3. PCR Amplification for IL-10 gene with i-StarTaq™ DNA Polymerase of iNtRON

Total RNA was purified from cell using easy-BLUE™ Kit, RNA-spin™ Kit and easy-spin™ Kit. And then RNA from easy-BLUE™ Kit and RNA-spin™ Kit were treated DNase after purifying RNA. RNA from easy-spin™ Kit was not treated DNase. And then PCR reaction was performed using i-StarTaq™ DNA Polymerase. It was analyzed in gel electrophoresis. 5 μl of eluted solution was loaded per lane on a 1.0% agarose gel.

Lane M, marker DNA; lane 1, PCR of RNA from easy-BLUE™ Kit after treating DNase; lane 2, PCR of RNA from RNA-spin™ Kit after treating DNase; lane 3, PCR of RNA from easy-spin™ (DNA free) Kit

- Yield and purity of iNtRON’s related products

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Yield</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy-BLUE™ Kit</td>
<td>17~22 μg</td>
<td>1.87 ~ 2.02</td>
</tr>
<tr>
<td>RNA-spin™ Kit</td>
<td>14~18 μg</td>
<td>1.95 ~ 2.05</td>
</tr>
<tr>
<td>easy-spin™ Kit</td>
<td>15~20 μg</td>
<td>1.96 ~ 2.09</td>
</tr>
</tbody>
</table>

TROUBLESHOOTING GUIDE

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low RNA yield or no RNA</td>
<td>Too much starting material</td>
<td>Do not overload the sample, loading significantly reduces yield. Reduce the amount of starting material</td>
</tr>
<tr>
<td>Sample integrity is poor</td>
<td>Samples that were not homogenized or frozen immediately upon isolation may have decreased amount of RNA with reduced integrity. Freeze tissue immediately in liquid nitrogen and store at −70°C if they cannot be immediately processed. Homogenized samples should be stored at −20°C or −70°C.</td>
<td></td>
</tr>
<tr>
<td>Insufficient homogenization</td>
<td>Homogenize until visible tissue fragment are eliminated.</td>
<td></td>
</tr>
<tr>
<td>Step were not followed correctly or wrong reagent used</td>
<td>- Check the protocol; Washing buffer B did not contain 100% EtOH so, 100% EtOH must be added to the Washing buffer B before use.</td>
<td></td>
</tr>
<tr>
<td>Lysate allowed to overheating during homogenization</td>
<td>- If overheating is a problem, lysate can be placed on ice. Work as quickly as possible.</td>
<td></td>
</tr>
<tr>
<td>Incomplete removal of supernatant</td>
<td>- Check the step 1 of protocol 1. When processing cultured cells ensure complete removal of the supernatant after cell harvesting.</td>
<td></td>
</tr>
<tr>
<td>RNA degradation</td>
<td>RNA degraded during sample preparation</td>
<td>- It is essential to work quickly during sample preparation.</td>
</tr>
<tr>
<td>Inappropriately handled</td>
<td>- Use DEPC-treated glassware and wear gloves at all time.</td>
<td></td>
</tr>
<tr>
<td>RNA does not perform in the downstream application</td>
<td>Ethanol carryover</td>
<td>- Ensure that during the Washing buffer B, the easy-spin™ column is spun at maximum speed 1,000 rpm to dry the easy-spin™ column</td>
</tr>
</tbody>
</table>

RELATED PRODUCTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&A-BLUE™ Total RNA Extraction Kit</td>
<td>17051</td>
</tr>
<tr>
<td>easy-RED™ Total RNA Extraction Kit</td>
<td>17093</td>
</tr>
<tr>
<td>easy-RED™ BYF Total RNA Extraction Kit</td>
<td>17064</td>
</tr>
<tr>
<td>Maxime™ RT PreMix (Oligo (dT)12 Primer)</td>
<td>25081</td>
</tr>
<tr>
<td>Maxime™ RT PreMix (Random Primer)</td>
<td>25082</td>
</tr>
<tr>
<td>Maxime™ RT-PCR PreMix</td>
<td>25131</td>
</tr>
<tr>
<td>ONE-STEP RT-PCR PreMix Kit</td>
<td>25101</td>
</tr>
<tr>
<td>RNase WIPER</td>
<td>21131</td>
</tr>
<tr>
<td>RedSafe™ Nucleic Acid Staining Solution</td>
<td>21141</td>
</tr>
<tr>
<td>Agarose LE</td>
<td>32034</td>
</tr>
</tbody>
</table>

Trademarks: iNtRON, DNA-spin™, DNA-red™, DNA-free™, PCR-poly-spin™, RNA-spin™, RED-spin™, RED-BLUE, easy-RED™, DNA-spin™, DNA-red™, DNA-free™, PCR-poly-spin™, RED-spin™, RED-BLUE, easy-RED™, WEST-spin™, WEST-DG™, Genelator™, PRO-BIO™, SMART™, PRO-FLUOR™, VeTeK™, Muta™, Muta-RED™, DNeasy™, QMS™, iSTAR™, TAIL™, ROSA™, RedSafe™, RedSafe™, RedSafe™, WiPER™, EasySpin™, EasySpin™. Some of these trademarks are registered in certain countries. iNtRON is a trademark of iNtRON Biotechnology Inc. iNtRON’s products are for research use only. Prior to using them for other purposes, the user must validate the system in compliance with the applicable laws, standards, and regulations. The PCR process is covered by patents issued and applicable in certain countries. iNtRON Biotechnology, Inc. does not encourage or support the unauthorized or unauthorized use of the PCR process. Use of this product is recommended for persons who have a license to perform PCR or are not required to obtain a license.