CELLine

Disposable Bioreactor for Efficient Protein Expression

IBS INTEGRA BIOSCIENCES
Efficient cell cultivation relies on maintaining an optimal supply of oxygen and nutrients, as well as on removing inhibiting metabolic waste products efficiently. These factors limit the maximum cell density obtainable from standard, homogeneous cell culture techniques which are consequently poor at achieving high expression levels of proteins.

The Two-Compartment Bioreactor CELLine is designed to overcome such limitations. The innovative CELLine technology separates the bioreactor into a medium and cell compartment by means of a 10 kDa semi-permeable membrane. This membrane allows a continuous diffusion of nutrients into the cell compartment with a concurrent removal of any inhibitory waste product. The individual accessibility of the compartments allows to supply cells with fresh medium without mechanically interfering with the culture.

Efficient gas transfer is ensured by a silicone membrane which forms the cell compartment base. This membrane provides an optimal oxygen supply and control of carbon dioxide levels by providing a short diffusion pathway to the cell compartment. All together, the technology built into CELLine allows simulating quasi in vivo cultivation conditions leading to high cell densities.
Application

Efficient protein expression

Cells growing under the optimal conditions created in CELLine reach densities of 10^7 to 10^8 cells per ml, a cell concentration that is about two magnitudes higher than the one obtained with conventional culture techniques. Consequently, the concentration of expressed protein is typically 50 to 100 times above what is found in standard cell culture disposables. In addition, CELLine has been designed to maintain cells for several months in culture allowing to periodically harvest expressed proteins. By combining high product concentration with recurring product collection, large amounts of highly concentrated proteins are routinely obtained in CELLine. With classic culture techniques, contaminating proteins originating from serum or cells are a significant part of the total protein fraction. In contrast, due to the high product concentrations obtained with CELLine, the relative level of contaminating proteins to the expressed protein is much lower. In many cases the quality of monoclonal antibodies produced with CELLine is sufficient to perform standard laboratory tests, like Western Blot, without the need of any further purification steps.

In vivo-type cultivation

Successful cultivation of different cell types demands not only skillful handling, but also depends to a large extent on the chosen cultivation system. CELLine technology closely mimics the physiological conditions within the body enabling production of drastically increased cell densities and more organotypic cell morphologies, sometimes even to the extent of 3-dimensional cell growth.

Further Reading:

For more references go to www.integra-biosciences.com or contact us at cell@integra-biosciences.com.

The choice between CELLine classic and CELLine adhere makes it possible to grow both suspension or anchorage-dependent cells, hence allowing production of different biomolecules using different expression systems such as monoclonal antibodies in hybridomas, recombinant proteins in transfected cell lines and virus particles in packaging cells.

In vivo-type cultivation

Successful cultivation of different cell types demands not only skillful handling, but also depends to a large extent on the chosen cultivation system. CELLine technology closely mimics the physiological conditions within the body enabling production of drastically increased cell densities and more organotypic cell morphologies, sometimes even to the extent of 3-dimensional cell growth.

Representative EM micrographs showing the flat morphology of HEp-2 cells growing as monolayer in a standard T-Flask (left) compared to the rounded shape of the same cells when cultivated in CELLine adhere (right).

[With courtesy of W. Pfaller, Institute of Physiology, University of Innsbruck]
Easy and economical protein expression

Easy operation
Due to its uncomplicated design working with the CELLine bioreactor is as simple as with any standard tissue culture flask. For a straightforward control of the growth process, microscopic observation of the cells is made possible by the transparent design of the CELLine classic bioreactor. The system operates independently of any complicated control technology and works without any pump systems or agitation devices. Easily and securely stackable, CELLine flasks occupy a minimum of space in any standard CO2 incubator. A specific adaptation of the cell culture techniques or media composition is generally not necessary when starting to work with CELLine and both, serum-supplemented or serum free media are suitable.

Cost efficiency
CELine has been designed to bring substantial cost savings to cell cultivation. Labour costs are considerably reduced, because fewer disposable flasks need to be handled compared to other culture techniques in order to produce milligram amounts of protein. Also the expenses for media supplements are significantly reduced, since the addition of serum or other synthetic additives can be limited to the cell compartment. Furthermore, the high production yield and quality obtained in the relatively small culture volume of CELLine contribute to reduce costs and labour time in the subsequent downstream processing steps of the product.

Economic analysis for mAb Production

<table>
<thead>
<tr>
<th>Units</th>
<th>CELLine 1000</th>
<th>T-Flask 225cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybridoma productivity (literature value) pg/h x cell</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Cell density cell/ml</td>
<td>3x10⁷</td>
<td>1x10⁴</td>
</tr>
<tr>
<td>Culture volume ml</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Yield per harvest (7 days) mg</td>
<td>30.24</td>
<td>2.52</td>
</tr>
<tr>
<td>mAb concentration mg/ml</td>
<td>1.51</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production Costs (250 mg mAb)</th>
<th>Amount</th>
<th>Cost (in $)</th>
<th>Amount</th>
<th>Cost (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvests per disposable</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of disposables</td>
<td>1</td>
<td>150</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Medium ($ 20 per liter) litres</td>
<td>8</td>
<td>160</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Serum consumption* ($ 300 per liter) ml</td>
<td>16</td>
<td>4.8</td>
<td>500</td>
<td>150</td>
</tr>
<tr>
<td>Labour** ($ 25 per hour) min</td>
<td>120</td>
<td>50</td>
<td>500</td>
<td>208</td>
</tr>
<tr>
<td>Total costs</td>
<td>364.8</td>
<td>758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs per mg mAb</td>
<td>1.46</td>
<td>3.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The medium is supplemented with 10% of serum. In the case of CELLine, only the medium in the cell compartment is supplemented.
** Labour is calculated as the time used for inoculating and harvesting one CELLine flask (15 min) or one T-Flask (5 min) multiplied by the number of harvests or flasks, respectively.

Animal welfare
CELine is a disposable bioreactor that is competitive in costs and performance to the production of monoclonal antibodies using mice ascites. As an added benefit, when expressing monoclonal antibodies in hybridomas using CELLine, the antibody preparation is free of any contamination from mouse immunoglobulins. Over recent years, CELLine technology has been successfully adopted worldwide for the production of monoclonal antibodies and thereby has contributed diminishing the use of laboratory mice.
CELLine Two-Compartment Disposable Bioreactors are manufactured from optically clear virgin polysterene with a gas transfer bottom made of a molded silicone membrane providing a 0.2 µm vent barrier. The compartments are separated by a 10 kDa semi-permeable cellulose acetate membrane and individually pressure tested for integrity. The bioreactors are easily stackable owing to specific stabilisation interlocks, packed individually in easy to open medical-grade blister packaging, sterilised by gamma irradiation and non-pyrogenic.

Technical Specifications

CELLine Two-Compartment Disposable Bioreactors are manufactured from optically clear virgin polyesterene with a gas transfer bottom made of a molded silicone membrane providing a 0.2 µm vent barrier. The compartments are separated by a 10 kDa semi-permeable cellulose acetate membrane and individually pressure tested for integrity. The bioreactors are easily stackable owing to specific stabilisation interlocks, packed individually in easy to open medical-grade blister packaging, sterilised by gamma irradiation and non-pyrogenic.

<table>
<thead>
<tr>
<th>CELLine CL 350</th>
<th>CELLine CL 1000</th>
<th>CELLine AD 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size: L x W x H (mm)</td>
<td>190 x 95 x 62</td>
<td>275 x 120 x 80</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>185</td>
<td>334</td>
</tr>
<tr>
<td>Medium compartment cap</td>
<td>28 mm vented (0.2 µm), green polypropylene cap with polypropylene liner</td>
<td>38 mm vented (0.2 µm), white polypropylene cap with polypropylene liner</td>
</tr>
<tr>
<td>Cell compartment cap</td>
<td>24 mm polypropylene cap with polyethylene liner</td>
<td>28 mm polypropylene cap with polyethylene liner</td>
</tr>
<tr>
<td>Cell compartment inlay</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Microscopic viewing (inverted microscope)</td>
<td>center window requires objectice working distances of 2.5 mm</td>
<td>center window requires objectice working distances of 2.5 mm</td>
</tr>
<tr>
<td>Vertical and horizontal volume markings</td>
<td>50 - 350 ml</td>
<td>100 - 1000 ml</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Description</th>
<th>Quantity/Case</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELLine CL 350</td>
<td>Disposable Two-Compartment Bioreactor for suspension cells, 350 ml media volume, 5 ml culture volume</td>
<td>5</td>
<td>90010</td>
</tr>
<tr>
<td>CELLine CL 1000</td>
<td>Disposable Two-Compartment Bioreactor for suspension cells, 1000 ml media volume, 15 ml culture volume</td>
<td>3</td>
<td>90005</td>
</tr>
<tr>
<td>CELLine AD 1000</td>
<td>Disposable Two-Compartment Bioreactor with matrix inlay for anchorage-dependent cells, 1000 ml media volume, 15 ml culture volume</td>
<td>3</td>
<td>90025</td>
</tr>
</tbody>
</table>
Having troubles expressing enough recombinant protein?

Boost your production of monoclonal antibodies or recombinant proteins by cultivating cells at highest densities with CELLine, the disposable bioreactor based on Two-Compartment Technology.

Efficient protein expression
50-100 times higher product concentrations compared to classic cell culture disposables

Easy operation
as simple as using a tissue culture flask

Cost efficient
90% less media supplements and reduced handling time

Applications
Monoclonal antibody production in hybridomas
Recombinant protein expression in transfected cells
Virus production
Continuous culture maintenance for long-term studies
High-density cell culture
2 Standard Operating Instructions

2.1 CELLine CL 350

2.1.1 Required Material and Preparation

- CELLine CL 350 Bioreactor
- Standard 10 ml serological pipettes
- Pipetting aid
- Preculture of 8×10^6 viable cells
- 350 ml of fresh nutrient medium suitable for your individual cell type and equilibrated to the desired culture temperature (see 3.1).
- 5 ml of fresh complete medium

For more information on media composition please also refer to general note 3.2.

2.1.2 Equilibration of CELLine

Day 1 In order to obtain optimal performance of CELLine put 10 ml of nutrient medium into the medium compartment and let the semi-permeable membrane equilibrate for at least 5 minutes (see 3.3).

2.1.3 Preparation of Inoculum

Obtain 8×10^6 viable cells from a pre-culture in log growth phase and suspend the cells in 5 ml fresh medium resulting in a minimal concentration of 1.5×10^6 viable cells / ml (see 3.4).

2.1.4 Inoculation of CELLine

Loosen the green cap of medium compartment in order to prevent air lock. Aspirate the 5 ml cell suspension into a serological pipette, open the cell compartment and inoculate the cell compartment by inserting the pipette into the black silicone cone.

It is important to minimize the introduction of air bubbles into the cell compartment during seeding. In case air gets trapped within the cell compartment try to carefully remove the big bubbles by carefully drawing them back into the pipette together with fluid. Close the cell compartment by completely tighten the cap.

After seeding add 340 ml of equilibrated medium into the medium compartment and then completely tighten both caps. Place the CELLine into a standard CO$_2$ incubator under culture conditions appropriate for your individual cell type.
2.1.5 Culture monitoring (optional)

Day 3 After 72 hours, take a sample from the cell compartment for assessment of cell density and viability, expression levels of recombinant protein or determination of other individual critical culture parameters. This is especially important when culturing a new cell type in order to establish a working protocol.

2.1.6 Cell compartment harvest and Split back

Day 7 In general, the first harvest is recommended 7 days after inoculation. For more information please refer to general note 3.5.

In order to harvest the cells, simply pour off and discard all medium from the medium compartment.

Avoid to shake the CELLine during this process (see note 3.6)

Loosen the green medium compartment cap

Gently harvest all liquid from the cell compartment by aspirating content with a 10 ml serological pipette. Slowly pipette the liquid up and down several times to thoroughly mix the cell suspension. The cell compartment will comprise about 5 ml cell suspension with the individual secreted product. Due to osmotic flux of liquid from the medium to the cell compartment, the total volume might be slightly increased (see note 3.7).

Take 1 ml of mixed cell suspension and add to 4 ml fresh complete medium (1:4 Split Back) and gently return the 5 ml of cell suspension back into the cell compartment (see note 3.5).

Remove any air bubbles as described above. Tighten the green medium compartment cap.

Add 350 ml of fresh, preheated nutrient medium to the medium compartment. Place CELLine back into the incubator until next harvest.

2.1.7 Harvesting Cycles

Consecutive harvests can approximately be made every 5 to 7 days (depending on the individual application and cell type used, see also 3.5). All harvests are performed as outlined above and should include a change of the culture media.

Periodically, cells can be monitored for growth and production by removing a small sample from the cell compartment.

If the CELLine Bioreactor is handled with care and the sterility barrier is not broken individual cultures can be maintained over several months.