1 INTRODUCTION
1.1 Intended Use

The DRG TM-CYFRA21.1 ELISA is an enzyme immunoassay for the quantitative in vitro measurement of CYFRA21-1 in serum and heparin plasma.

1.2 Summary and Explanation

CYFRA 21-1 is a fragment of cytokeratin 19. Although expressed in all body tissues its major occurrence is in the lung, particularly in lung cancer tissues. The major diagnostic importance of CYFRA 21-1 as a tumor marker is in differential diagnosis, prognosis, and aftercare of non-small-cell lung cancer (NSCLC) patients. Additionally, CYFRA 21-1 has been described as a tumor marker for the monitoring of bladder cancer.

The TM-CYFRA21.1 ELISA uses the two mouse monoclonal antibodies KS19.1 and BM19.21 to determine cytokeratin 19 fragments.

2 PRINCIPLE OF THE TEST

The DRG TM-CYFRA21.1 ELISA Kit is a solid phase enzyme-linked immunosorbent assay (ELISA) based on the sandwich principle.

The microtiter wells are coated with a monoclonal [mouse] antibody directed towards a unique antigenic site of the CYFRA21-1 molecule.

An aliquot of patient sample containing endogenous CYFRA21-1 is incubated in the coated well with enzyme conjugate, which is an anti-CYFRA21-1 monoclonal antibody conjugated with horseradish peroxidase. After incubation the unbound conjugate is washed off.

The amount of bound peroxidase is proportional to the concentration of CYFRA21-1 in the sample.

Having added the substrate solution, the intensity of colour developed is proportional to the concentration of CYFRA21-1 in the patient sample.
9. Allow the reagents to reach room temperature (21-26°C) before starting the test. Temperature will affect the absorbance readings of the assay. However, values for the patient samples will not be affected.

10. Never pipet by mouth and avoid contact of reagents and specimens with skin and mucous membranes.

11. Do not smoke, eat, drink or apply cosmetics in areas where specimens or kit reagents are handled.

12. Wear disposable latex gloves when handling specimens and reagents. Microbial contamination of reagents or specimens may give false results.

13. Handling should be done in accordance with the procedures defined by an appropriate national biohazard safety guideline or regulation.

14. Do not use reagents beyond expiry date as shown on the kit labels.

15. All indicated volumes have to be performed according to the protocol. Optimal test results are only obtained when using calibrated pipettes and microtiterplate readers.

16. Do not mix or use components from kits with different lot numbers. It is advised not to exchange wells of different plates even of the same lot. The kits may have been shipped or stored under different conditions and the binding characteristics of the plates may result slightly different.

17. Avoid contact with Stop Solution containing 0.5 M H₂SO₄. It may cause skin irritation and burns.

18. Some reagents contain Proclin 300, BND and/or MIT as preservatives. In case of contact with eyes or skin, flush immediately with water.

19. TMB substrate has an irritant effect on skin and mucosa. In case of possible contact, wash eyes with an abundant volume of water and skin with soap and abundant water. Wash contaminated objects before reusing them. If inhaled, take the person to open air.

20. Chemicals and prepared or used reagents have to be treated as hazardous waste according to the national biohazard safety guideline or regulation.

21. For information on hazardous substances included in the kit please refer to Material Safety Data Sheets. Material Safety Data Sheets for this product are available upon request directly from DRG.
4 REAGENTS

4.1 Reagents provided
1. Microtiterwells, 12x8 (break apart) strips, 96 wells;
 Wells coated with anti-CYFRA21-1 antibody (monoclonal).
2. Standard (Standard 0-4), 5 vials (lyophilized), 1.0 mL;
 Concentrations: 0; 3; 10; 25; 50 ng/mL
 See „Preparation of Reagents“;
 Contain non-mercury preservative.
3. Control, 1 vial (lyophilized), 1.0 mL,
 For control values and ranges please refer to vial label or QC-Datasheet.
 Contain non-mercury preservative.
4. Sample Diluent, 1 vial, 3 mL, ready to use,
 Contains non-mercury preservative.
5. Assay Buffer, 1 vial, 7 mL, ready to use,
 Contains non-mercury preservative.
6. Enzyme Conjugate, 1 vial, 1.2 mL, ready to use,
 Anti-CYFRA21-1 antibody conjugated to horseradish peroxidase;
 Contains non-mercury preservative.
7. Substrate Solution, 1 vial, 14 mL, ready to use,
 Tetramethylbenzidine (TMB).
8. Stop Solution, 1 vial, 14 mL, ready to use,
 Contains 0.5M H₂SO₄,
 Avoid contact with the stop solution. It may cause skin irritations and burns.
9. Wash Solution, 1 vial, 30 mL (40X concentrated),
 see „Preparation of Reagents“.

Note: Additional Sample Diluent for sample dilution is available upon request.

4.2 Materials required but not provided
- A microtiter plate calibrated reader (450 ± 10 nm) (e.g. the DRG Instruments Microtiter Plate Reader).
- Calibrated variable precision micropipettes.
- Absorbent paper.
- Distilled or deionized water
- Timer
- Semi logarithmic graph paper or software for data reduction

4.3 Storage Conditions
When stored at 2 °C to 8 °C unopened reagents will retain reactivity until expiration date. Do not use reagents beyond this date.
Opened reagents must be stored at 2 °C to 8 °C. Microtiter wells must be stored at 2 °C to 8 °C. Once the foil bag has been opened, care should be taken to close it tightly again.

Note: The reconstituted standards and control are stable for at least 4 weeks at 2-8°C.
For longer storage freeze at -20°C.

4.4 Reagent Preparation

Bring all reagents and required number of strips to room temperature prior to use.

Standards

Reconstitute the lyophilized contents of the standard vial with 1.0 mL Aqua dest.

Note: The reconstituted standards are stable for at least 4 weeks at 2 °C to 8 °C.
For longer storage freeze at -20°C.

Control

Reconstitute the lyophilized content with 1.0 mL Aqua dest. and let stand for 10 minutes in minimum. Mix the control several times before use.

Note: The reconstituted control is stable for at least 4 weeks at 2 °C to 8 °C.
For longer storage freeze at -20°C.

Wash Solution

Add deionized water to the 40X concentrated Wash Solution.

Dilute 30 mL of concentrated Wash Solution with 1170 mL deionized water to a final volume of 1200 mL.

The diluted Wash Solution is stable for 2 weeks at room temperature.

4.5 Disposal of the Kit

The disposal of the kit must be made according to the national regulations. Special information for this product is given in the Material Safety Data Sheet.

4.6 Damaged Test Kits

In case of any severe damage to the test kit or components, DRG has to be informed in writing, at the latest, one week after receiving the kit. Severely damaged single components should not be used for a test run. They have to be stored until a final solution has been found. After this, they should be disposed according to the official regulations.
5 SPECIMEN COLLECTION AND PREPARATION
Serum or heparin plasma can be used in this assay.
Citrate plasma results in decreased, EDTA in strongly increased values.
Do not use haemolytic, icteric or lipaemic specimens.
Please note: Samples containing sodium azide should not be used in the assay.

5.1 Specimen Collection

Serum:
Collect blood by venipuncture (e.g. Sarstedt Monovette # 02.1388.001), allow to clot, and separate serum by centrifugation at room temperature. Do not centrifuge before complete clotting has occurred. Patients receiving anticoagulant therapy may require increased clotting time.

Plasma:
Whole blood should be collected into centrifuge tubes containing anti coagulant and centrifuged immediately after collection.
(E.g. for Heparin plasma Sarstedt Monovette – orange cap - # 02.165.001;

5.2 Specimen Storage and Preparation
Specimens should be capped and may be stored for up to 2 days at 2 °C to 8 °C prior to assaying.
Specimens held for a longer time should be frozen only once at -20°C prior to assay. Thawed samples should be inverted several times prior to testing.

5.3 Specimen Dilution
If in an initial assay, a specimen is found to contain more than the highest standard, the specimens can be diluted with Sample Diluent and reassayed as described in Assay Procedure.
For the calculation of the concentrations this dilution factor has to be taken into account.
Example:
a) dilution 1:10: 10 µL Serum + 90 µL Sample Diluent (mix thoroughly)
b) dilution 1:100: 10 µL dilution a) 1:10 + 90 µL Sample Diluent (mix thoroughly).

6 ASSAY PROCEDURE
6.1 General Remarks
- All reagents and specimens must be allowed to come to room temperature before use. All reagents must be mixed without foaming.
- Once the test has been started, all steps should be completed without interruption.
- Use new disposal plastic pipette tips for each standard, control or sample in order to avoid cross contamination.

DRG International, Inc., USA Fax: (908) 233 0758 e-mail: corp@drg-international.com
Absorbance is a function of the incubation time and temperature. Before starting the assay, it is recommended that all reagents are ready, caps removed, all needed wells secured in holder, etc. This will ensure equal elapsed time for each pipetting step without interruption.

As a general rule the enzymatic reaction is linearly proportional to time and temperature.

6.2 Test Procedure

Each run must include a standard curve.

1. Secure the desired number of Microtiter wells in the frame holder.
2. Dispense 50 µL of Assay Buffer into each well.
3. Dispense 10 µL Enzyme Conjugate into each well.
4. Dispense 50 µL of each Standard, Control and samples with new disposable tips into appropriate wells. Thoroughly mix for 10 seconds. It is important to have a complete mixing in this step.
5. Incubate for 60 minutes at room temperature.
6. Briskly shake out the contents of the wells. Rinse the wells 3 times with diluted Wash Solution (350 µL per well). Strike the wells sharply on absorbent paper to remove residual droplets.
 Important note:
 The sensitivity and precision of this assay is markedly influenced by the correct performance of the washing procedure!
7. Add 100 µL of Substrate Solution to each well.
8. Incubate for 15 minutes at room temperature.
9. Stop the enzymatic reaction by adding 100 µL of Stop Solution to each well.
10. Determine the absorbance (OD) of each well at 450 ± 10 nm with a microtiter plate reader. It is recommended that the wells be read within 10 minutes after adding the Stop Solution.

6.3 Calculation of Results

1. Calculate the average absorbance values for each set of standards, controls and patient samples.
2. Using semi-logarithmic graph paper, construct a standard curve by plotting the mean absorbance obtained from each standard against its concentration with absorbance value on the vertical (Y) axis and concentration on the horizontal (X) axis.
3. Using the mean absorbance value for each sample determine the corresponding concentration from the standard curve.
4. Automated method: The results in the IFU have been calculated automatically using a 4 PL (4 Parameter Logistics) curve fit. 4 Parameter Logistics is the preferred method. Other data reduction functions may give slightly different results.
5. The concentration of the samples can be read directly from this standard curve. Samples with concentrations higher than that of the highest standard have to be further diluted or reported as > 50 ng/mL. For the calculation of the concentrations this dilution factor has to be taken into account.
6.3.1 Example of Typical Standard Curve
The following data is for demonstration only and cannot be used in place of data generations at the time of assay.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Optical Units (450 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0 (0 ng/mL)</td>
<td>0.05</td>
</tr>
<tr>
<td>Standard 1 (3 ng/mL)</td>
<td>0.23</td>
</tr>
<tr>
<td>Standard 2 (10 ng/mL)</td>
<td>0.63</td>
</tr>
<tr>
<td>Standard 3 (25 ng/mL)</td>
<td>1.37</td>
</tr>
<tr>
<td>Standard 4 (50 ng/mL)</td>
<td>2.35</td>
</tr>
</tbody>
</table>

7 EXPECTED NORMAL VALUES
It is strongly recommended that each laboratory should determine its own normal and abnormal values.

In a study conducted with apparently normal healthy adults, using the DRG TM-CYFRA21.1 ELISA the following values are observed:

<table>
<thead>
<tr>
<th>Population</th>
<th>Valid N</th>
<th>5% Percentile</th>
<th>95% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males and females</td>
<td>80</td>
<td>0.00 ng/mL</td>
<td>1.29 ng/mL</td>
</tr>
</tbody>
</table>

The results alone should not be the only reason for any therapeutic consequences. The results should be correlated to other clinical observations and diagnostic tests.

8 QUALITY CONTROL
Good laboratory practice requires that controls be run with each calibration curve. A statistically significant number of controls should be assayed to establish mean values and acceptable ranges to assure proper performance.

It is recommended to use control samples according to state and federal regulations. The use of control samples is advised to assure the day to day validity of results. Use controls at both normal and pathological levels.

The controls and the corresponding results of the QC-Laboratory are stated in the QC certificate added to the kit. The values and ranges stated on the QC sheet always refer to the current kit lot and should be used for direct comparison of the results.

It is also recommended to make use of national or international Quality Assessment programs in order to ensure the accuracy of the results.

Employ appropriate statistical methods for analysing control values and trends. If the results of the assay do not fit to the established acceptable ranges of control materials patient results should be considered invalid.

In this case, please check the following technical areas: Pipetting and timing devices; photometer, expiration dates of reagents, storage and incubation conditions, aspiration and washing methods.

After checking the above mentioned items without finding any error contact your distributor or DRG directly.
9 PERFORMANCE CHARACTERISTICS

9.1 Assay Dynamic Range
The range of the assay is between 0.15 – 50 ng/mL.

9.2 Specificity of Antibodies (Cross Reactivity)
Sera of healthy individuals did not react with the TM-CYFRA21.1 ELISA

9.3 Sensitivity
The analytical sensitivity of the DRG ELISA was calculated by adding 3 standard deviations to the mean of 20 replicate analyses of the Zero Standard (S0) and was found to be 0.15 ng/mL.

9.4 Reproducibility
9.4.1 Intra Assay
The within assay variability is shown below:
9.4.2 Inter Assay

The between assay variability is shown below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Mean (ng/mL)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>15.4</td>
<td>9.3</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>7.90</td>
<td>8.9</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>4.97</td>
<td>5.8</td>
</tr>
</tbody>
</table>

9.5 Recovery

Samples have been spiked by adding CYFRA 21-1 with known concentrations

The % Recovery has been calculated by multiplication of the ratio of the measurements and the expected values with 100.
9.6 Linearity

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dilution</th>
<th>Measured Conc. (ng/mL)</th>
<th>Expected Conc. (ng/mL)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>21.99</td>
<td>21.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:2</td>
<td>10.02</td>
<td>11.00</td>
<td>91.1</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>5.86</td>
<td>5.50</td>
<td>106.5</td>
</tr>
<tr>
<td></td>
<td>1:8</td>
<td>3.06</td>
<td>2.75</td>
<td>111.2</td>
</tr>
<tr>
<td></td>
<td>1:16</td>
<td>1.46</td>
<td>1.37</td>
<td>105.9</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>18.68</td>
<td>18.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:2</td>
<td>9.11</td>
<td>9.34</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>4.37</td>
<td>4.67</td>
<td>93.6</td>
</tr>
<tr>
<td></td>
<td>1:8</td>
<td>2.51</td>
<td>2.33</td>
<td>107.7</td>
</tr>
<tr>
<td></td>
<td>1:16</td>
<td>1.17</td>
<td>1.17</td>
<td>99.9</td>
</tr>
<tr>
<td>3</td>
<td>None</td>
<td>8.75</td>
<td>8.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:2</td>
<td>4.14</td>
<td>4.38</td>
<td>94.7</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>2.37</td>
<td>2.19</td>
<td>108.2</td>
</tr>
<tr>
<td></td>
<td>1:8</td>
<td>1.12</td>
<td>1.09</td>
<td>102.7</td>
</tr>
<tr>
<td></td>
<td>1:16</td>
<td>0.61</td>
<td>0.55</td>
<td>112.2</td>
</tr>
</tbody>
</table>

10 LIMITATIONS OF USE

Reliable and reproducible results will be obtained when the assay procedure is performed with a complete understanding of the package insert instruction and with adherence to good laboratory practice.

Any improper handling of samples or modification of this test might influence the results.

10.1 Interfering Substances

Haemoglobin (up to 4 mg/mL), Bilirubin (up to 0.5 mg/mL) and Triglyceride (up to 30 mg/mL) have no influence on the assay results.

The assay contains reagents to minimize interference of HAMA and heterophilic antibodies. However, extremely high titers of HAMA or heterophilic antibodies may interfere with the test results.

10.2 Drug Interferences

Until today no substances (drugs) are known to us, which have an influence to the measurement of CYFRA21-1 in a sample.

10.3 High-Dose-Hook Effect

No hook effect was observed in this test up to 250 ng/mL of CYFRA21-1.
11 LEGAL ASPECTS

11.1 Reliability of Results
The test must be performed exactly as per the manufacturer’s instructions for use. Moreover the user must strictly adhere to the rules of GLP (Good Laboratory Practice) or other applicable national standards and/or laws. This is especially relevant for the use of control reagents. It is important to always include, within the test procedure, a sufficient number of controls for validating the accuracy and precision of the test.

The test results are valid only if all controls are within the specified ranges and if all other test parameters are also within the given assay specifications. In case of any doubt or concern please contact DRG.

11.2 Therapeutic Consequences
Therapeutic consequences should never be based on laboratory results alone even if all test results are in agreement with the items as stated under point 11.1. Any laboratory result is only a part of the total clinical picture of a patient.

Only in cases where the laboratory results are in acceptable agreement with the overall clinical picture of the patient should therapeutic consequences be derived.

The test result itself should never be the sole determinant for deriving any therapeutic consequences.

11.3 Liability
Any modification of the test kit and/or exchange or mixture of any components of different lots from one test kit to another could negatively affect the intended results and validity of the overall test. Such modification and/or exchanges invalidate any claim for replacement.

Claims submitted due to customer misinterpretation of laboratory results subject to point 11.2. are also invalid.

Regardless, in the event of any claim, the manufacturer’s liability is not to exceed the value of the test kit. Any damage caused to the test kit during transportation is not subject to the liability of the manufacturer.

12 REFERENCES / LITERATURE
SYMBOLS USED WITH DRG ELISAS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>English</th>
<th>Deutsche</th>
<th>Français</th>
<th>Español</th>
<th>Italiano</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Conformity</td>
<td>European Conformity</td>
<td>CE-Konformitats-Kennzeichnung</td>
<td>Conforme aux normes européennes</td>
<td>Conformidad europea</td>
<td>Conformità europea</td>
</tr>
<tr>
<td>Consult instructions for use</td>
<td>Consult instructions for use</td>
<td>Gebrauchsanweisung beachten</td>
<td>Consulter les instructions d'utilisation</td>
<td>Consulti le istruzioni per l'uso</td>
<td>Consulter le manuel d'utilisation</td>
</tr>
<tr>
<td>In vitro diagnostic device</td>
<td>In vitro diagnostic device</td>
<td>In-vitro-Diagnostikum</td>
<td>Usage Diagnostic in vitro</td>
<td>Para uso Diagnóstico in vitro</td>
<td>Per uso Diagnostica in vitro</td>
</tr>
<tr>
<td>For research use only</td>
<td>For research use only</td>
<td>Nur für Forschungszwecke</td>
<td>Seulement dans le cadre de recherches</td>
<td>Sólo para uso en investigación</td>
<td>Solo a scopo di ricerca</td>
</tr>
<tr>
<td>Catalogue number</td>
<td>Catalogue number</td>
<td>Katalog-Nr.</td>
<td>Référence</td>
<td>Número de catálogo</td>
<td>No. di Cat.</td>
</tr>
<tr>
<td>Lot. No. / Batch code</td>
<td>Lot. No. / Batch code</td>
<td>Chargen-Nr.</td>
<td>No. de lot</td>
<td>Número de lote</td>
<td>Lotto no</td>
</tr>
<tr>
<td>Contains sufficient for <n> tests</td>
<td>Contains sufficient for <n> tests</td>
<td>Ausreichend für ”n“ Ansätze</td>
<td>Contenu suffisant pour ”n“ tests</td>
<td>Contenido suficiente para ”n“ ensayos</td>
<td>Contenuto sufficiente per ”n“ saggi</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Storage Temperature</td>
<td>Lagerungstemperatur</td>
<td>Température de conservation</td>
<td>Temperatura de conservación</td>
<td>Temperatura di conservazione</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Expiration Date</td>
<td>Mindesthaltbarkeits-datum</td>
<td>Date limite d'utilisation</td>
<td>Fecha de caducidad</td>
<td>Data di scadenza</td>
</tr>
<tr>
<td>Legal Manufacturer</td>
<td>Legal Manufacturer</td>
<td>Hersteller</td>
<td>Fabricant</td>
<td>Fabricante</td>
<td>Fabbricante</td>
</tr>
<tr>
<td>Microtiterwells</td>
<td>Microtiterwells</td>
<td>Mikrotiterwells</td>
<td>Plaques de micro-titration</td>
<td>Placas multipocillo</td>
<td>Micropozzetti</td>
</tr>
<tr>
<td>Antiserum</td>
<td>Antiserum</td>
<td>Antiserum</td>
<td>Antisérum</td>
<td>Antisuero</td>
<td>Antisiero</td>
</tr>
<tr>
<td>Enzyme Conjugate</td>
<td>Enzyme Conjugate</td>
<td>Enzymkonjugat</td>
<td>Conjugué enzymatique</td>
<td>Conjugado enzimático</td>
<td>Tracciante enzimatico</td>
</tr>
<tr>
<td>Enzyme Complex</td>
<td>Enzyme Complex</td>
<td>Enzymkomplex</td>
<td>Complex enzymatique</td>
<td>Complex enzimático</td>
<td>Complesso enzimatico</td>
</tr>
<tr>
<td>Substrate Solution</td>
<td>Substrate Solution</td>
<td>Substratösung</td>
<td>Solution substrat</td>
<td>Solución de sustrato</td>
<td>Soluzione di substrato</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>Stop Solution</td>
<td>Stoplösung</td>
<td>Solution d’arrêt</td>
<td>Solución de parada</td>
<td>Soluzione d’arresto</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
<td>Kontrolle</td>
<td>Contrôle</td>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td>Assay Buffer</td>
<td>Assay Buffer</td>
<td>Assaypuffer</td>
<td>Tampon d’essai</td>
<td>Tampón de ensayo</td>
<td>Tampone del test</td>
</tr>
<tr>
<td>Wash Solution</td>
<td>Wash Solution</td>
<td>Wuschlösung</td>
<td>Solution de lavage</td>
<td>Solución de lavado</td>
<td>Soluzione di lavaggio</td>
</tr>
<tr>
<td>1N NaOH</td>
<td>1N NaOH</td>
<td>1N NaOH</td>
<td>1N NaOH</td>
<td>1N NaOH</td>
<td>1N NaOH</td>
</tr>
<tr>
<td>1 N HCl</td>
<td>1 N HCl</td>
<td>1 N HCl</td>
<td>1N HCl</td>
<td>1 N HCl</td>
<td>1 N HCl</td>
</tr>
<tr>
<td>Sample Diluent</td>
<td>Sample Diluent</td>
<td>Probenverdünnungs-medium</td>
<td>Solution pour dilution de l’échantillon</td>
<td>Solución para dilución de la muestra</td>
<td>Diluente dei campioni</td>
</tr>
<tr>
<td>Conjugate Diluent</td>
<td>Conjugate Diluent</td>
<td>Konjugatverdünnungs-medium</td>
<td>Solution pour dilution du conjugué</td>
<td>Solución para dilución del conjugado</td>
<td>Diluente del tracciante</td>
</tr>
</tbody>
</table>