

For research use only. Not for clinical diagnosis.

Catalog No. TPS-17

## Drosophila Diptericin Inhibitor TPS-17 (E)-3-(c-3,c-4-dihydroxycyclopent-r-1-yl)propenamide

## **BACKGROUND**

Innate immunity comprises evolutionarily conserved self-defense mechanisms against microbial infections. In mammals, innate immunity interacts with adaptive immunity and has a key role in the regulated immune response. Therefore, innate immunity is a pharmaceutical target for the development of immune regulators. Using *Drosophila ex vivo* culture systems (Yajima et al. Biochem. J. 371, 205-210, 2003), a cyclopentanediol analogue is isolated from *Aspergillus sp.* as an immunosuppressive substance (Sekiya et al. Biochem. Pharm. 75, 2165-2174, 2008). This compound selectively suppresses activation of the imd pathway in *Drosophila in vivo* and the target molecules of the compound lie between the Imd adaptor protein and dTAK1 kinase in the imd pathway. In human cells, the compound suppresses TNF- $\alpha$ , but not IL-1  $\beta$ , stimulation-induced activation of NF- $\kappa$ B, suggesting that its target molecules are upstream of TAK1 in mammalian innate immunity. The compound, TPS-17, is developed from the cyclopentanediol analogue (Kikuchi et al. Eur.J.Med.Chem 46. 1263-1273, 2011).

Molecular Formula $C_8H_{13}NO_3$ Volume500 ugMolecular Weight171.2

**CAS No.** 924656-08-6

**Solubility** DMSO

Structure

References

<sup>1</sup>H NMR Consistent with structure

Mass Spectrum Consistent with structure

LCMS No data

**Protocol** The compound is dissolved in DMSO and added to the culture medium.

**Experimental data** IC50 value of TPS-17 on the inhibition of the imd pathway in *Drosophila ex vivo* culture system is 3 ug/ml.

TPS-17 does not suppress heat shock-mediated expression of lacZ in Drosophila ex vivo

culture system or *Drosophila* S2 cell viability (ID50 >50 ug/ml).

Storage Store below -20℃ (below -70℃ for prolonged storag e).

Aliquot to avoid cycles of freeze/thaw.

1) M. Yajima, M. Takada, N. Takahashi, H. Kikuchi, S. Natori, Y. Oshima, and S. Kurata: "A Newly Established in Vitro Culture Using Transgenic Drosophila Reveals Functional Coupling between the Phospholipase A2-generated Fatty Acid Cascade and Lipopolysaccharide-dependent Activation of the immune deficiency (imd) Pathway in Insect Immunity" *Biochem. J.*, 371, 205-210 (2003).

2) M. Sekiya, K. Ueda, K. Okazaki, H. Kikuchi, S. Kurata, and Y. Oshima."A Cyclopentanediol Analogue Selectively Suppresses the Conserved Innate Immunity

www.cosmobio.co.jp



## Anti phospho TDP-43 (pS409/410)

- Pathways, Drosophila IMD and TNF-a Pathways" *Biochem. Pharmacol.*, 75, 2165-2174 (2008).
- 3) H. Kikuchi, K. Okazaki, M. Sekiya, Y. Uryu, Y. Katou, K. Ueda, S. Kurata, Y. Oshima: "Synthesis and innate immunosuppressive effect of 1,2-cyclopentanediol derivatives" Eur.J.Med.Chem 46. 1263-1273 (2011).

For research use only. Not for clinical diagnosis.



COSMO BIO CO., LTD.

Inspiration for Life Science

TOYO 2CHOME, KOTO-KU, TOKYO, 135-0016, JAPAN

URL: http://www.cosmobio.co.jp e-mail: <u>export@cosmobio.co.jp</u> [Outside Japan] Phone: +81-3-5632-9617 [国内連絡先] Phone: +81-3-5632-9610

FAX: +81-3-5632-9618 FAX: +81-3-5632-9619