Quest Fluo-8TM Calcium Reagents and Screen QuestTM Fluo-8 NW Calcium Assay Kits

I. Introduction

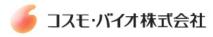
Calcium acts as a universal second messenger in a variety of cells. The beginning of life, the act of fertilization, is regulated by Ca^{2^+} . Numerous functions of all types of cells are regulated by Ca^{2^+} to a greater or lesser degree. Since the 1920s, scientists have attempted to measure Ca^{2^+} , but few were successful due to limited availability of Ca^{2^+} probes. The first reliable measurements of Ca^{2^+} were performed by Ridgway and Ashley by injecting the photoprotein aequorin into the giant muscle fiber of the barnacle. Subsequently, in the 1980s, Tsien and colleagues produced a variety of fluorescent indicators. Among them the fluorescein-based Ca^{2^+} reagents (such as Fluo-3 and Fluo-4) have provided trustworthy methods for measuring Ca^{2^+} . Since the development of these Ca^{2^+} probes, investigations of Ca^{2^+} -related intracellular phenomena have skyrocketed.

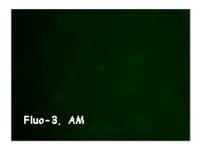
II. Quest Fluo-8TM Calcium Indicators, the Most Robust and Brightest Calcium Probes

Since being introduced Fluo-3 imaging and its analogs (such as Fluo-4) have revealed the spatial dynamics of many elementary processes in Ca²⁺ signaling. Fluo-3 and Fluo-4 have also been extensively used for flow cytometry and microplate-based (such as FLIPRTM) calcium detections. However the weak signal and harsh dyeloading conditions have limited their applications in some cellular analysis. Our Quest Fluo-8TM serial calcium detection reagents have been developed to address these limitations of Fluo-3 and Fluo-4.

The most important properties of Fluo-3 and Fluo-4 in cellular applications are their absorption spectrum compatible with excitation at 488 nm by argon-ion laser sources, and a very large fluorescence intensity increase in response to Ca^{2+} binding. These two valuable properties have been retained intact with our Quest Fluo- 8^{TM} Ca²⁺ detection reagents. The absorption and emission peaks of Quest Fluo- 8^{TM} reagents are 490 nm and 514 nm, respectively. They can be well excited with an argon ion laser at 488 nm, and their emitted fluorescence (at wavelengths 514 nm) increases with increasing Ca^{2+} . Quest Fluo- 8^{TM} is determined to undergo a >200-fold increase in fluorescence upon binding Ca^{2+} . Because the range of increase in Ca^{2+} in many cells after stimulation is generally 5- to10-fold, Quest Fluo- 8^{TM} is an excellent probe to use with high sensitivity in this region. The K_d of Quest Fluo- 8^{TM} is estimated to be 389 nM (22°C, pH 7.0 –7.5), but this value may be significantly influenced by pH, viscosity, and binding proteins in vivo conditions.

Besides their convenient 488 nm excitation wavelength and large fluorescence enhancement by calcium, Quest Fluo-8TM is much brighter in cells than Fluo-3 and Fluo-4 as shown in Figure 1. In addition, Quest Fluo-8 is much more readily loaded into live cells than Fluo-3 and Flu-4, both of which require 37 °C for optimal cell loading. Quest Fluo-8TM reagents have a less temperature-dependent cell loading property, giving similar results either at room temperature or 37°C. This characteristic makes Quest Fluo-8TM more robust for HTS applications.


Table 1. Spectral and Ca²⁺–Binding Properties of Quest Fluo-8™ Calcium Detection Reagents


Ca ²⁺ Indicator	Excitation	Emission	K _d of Ca ²⁺ -Binding
Quest Fluo-8 TM	490 nm	514 nm	389 nM
Quest Fluo-8HTM	490 nm	514 nm	232 nM
Quest Fluo-8L TM	490 nm	514 nm	1.86 uM

Compared to Fluo-3 and Fluo-4, our Quest Fluo-8TM calcium detection reagents have the following advantages:

- Convenient Wavelengths: maximum excitation @ ~490 nm; maximum emission @ ~514 nm.
- Enhanced Intensity: 2 times brighter than Fluo-4 AM; 4 times brighter than Fluo-3 AM.
- Faster Loading: dye loading at room temperature (rather than 37 °C that is required for Fluo-4 AM).
- *Versatile Ca*²⁺-*Binding K*_d as shown in Table 1.
- Versatile Packing Sizes to Meet Your Special Needs: 1 mg; 10x50 μg; 20x50 μg; HTS packages.

Ordering: sales@abdbioquest.com; 800-990-8053 or 408-733-1055

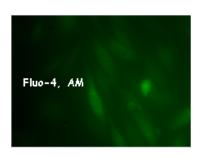


Figure 1. U2OS cells were seeded overnight at 40,000 cells per 100 μ L per well in a 96-well black wall/clear bottom costar plate. The growth medium was removed, and the cells were incubated with 100 μ l of 4 uM Fluo-3 AM, Fluo-4 AM or Quest Fluo-8TM AM in HHBS at 37 °C, 5% CO₂ incubator for 1 hour. The cells were washed twice with 200 μ l HHBS, then imaged with a fluorescence microscope (Olympus IX71) using FITC channel.

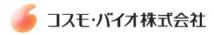
III. Use of Quest Fluo-8TM AM Esters

1. Cell Loading of Quest Fluo- 8^{TM} AM Esters:

AM esters are the non-poplar esters that readily cross live cell membranes, and rapidly hydrolyzed by cellular esterases inside live cells. AM esters are widely used for loading a variety of polar fluorescent probes into live cell non-invasively. However, cautions must be excised when AM esters are used since they are susceptible to hydrolysis, particularly in solution. They should be reconstituted just before use in high-quality, anhydrous dimethylsulfoxide (DMSO). DMSO stock solutions may be stored desiccated at –20°C and protected from light. Under these conditions, AM esters should be stable for several months.

Following is our recommended protocol for loading Quest Fluo-8TM AM esters into live cells. This protocol only provides a guideline, should be modified according to your specific needs.

- *a*) Prepare a 2 to 5 mM stock solution of Quest Fluo-8TM AM esters in high-quality, anhydrous DMSO. The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Quest Fluo-8TM AM esters.
 - [Note: A 20% Pluronic F-127 solution can be used in replacing DMSO to prepare solutions of these calcium indicators. A variety of Pluronic F-127 solutions can be purchased from ABD Bioquest]. [Caution: long-term storage of AM esters in the presence of Pluronic F-127 is not recommended].
- b) On the day of the experiment, either dissolve Quest Fluo-8TM solid in DMSO or thaw an aliquot of the indicator stock solution to room temperature. Prepare a working solution of 1 to 10 μM in the buffer of your choice. For most of cell lines we recommend that 4-5 μM Quest Fluo-8TM reagents be used. The exact concentration of indicator required for cell loading must be determined empirically. To avoid calcium buffering, toxicity and other artifacts of overloading, one should generally use the lowest probe concentration that yields sufficient signal.
- c) Incubate cells with the Quest Fluo-8TM AM esters for 20 minutes to one hour at room temperature or 37 °C. [Note: Decreasing the loading temperature might reduce the indicator compartmentalization]
- d) Wash cells to remove excess probe.


2. Measuring Intracellular Calcium Responses

To determine either the free calcium concentration of a solution or the K_d of a single-wavelength calcium indicator, the following equation is used:

$$[Ca]_{free} = K_d[F - F_{min}]/F_{max} - F]$$

where F is the fluorescence of the indicator at experimental calcium levels, F_{min} is the fluorescence in the absence of calcium and F_{max} is the fluorescence of the calcium-saturated probe.

The dissociation constant (K_d) is a measure of the affinity of the probe for calcium. The Ca-binding and spectroscopic properties of fluorescent indicators vary quite significantly in cellular environments compared to calibration solutions. In situ response calibrations of intracellular indicators typically yield K_d values significantly higher than in vitro determinations. In situ calibrations are performed by exposing loaded cells to controlled Ca^{2^+} buffers in the presence of ionophores such as A-23187, 4-bromo A-23187 and ionomycin. Alternatively, cell

permeabilization agents such as digitonin or Triton® X-100 can be used to expose the indicator to the controlled Ca^{2^+} levels of the extracellular medium. The K_d values of Quest Fluo-8TM reagents are listed in Table 1 for your reference.

IV. Use of Screen QuestTM Fluo-8 NW Calcium Assay Kits for HTS Applications

GPCR activation can be detected by direct measurement of the receptor mediated cAMP accumulation, or changes in intracellular Ca²⁺ concentration. GPCR targets that couple via Gq produce an increase in intracellular Ca²⁺ that can be measured using a combination of Quest Fluo-8TM reagents and a fluorescence microplate reader. The fluorescence imaging plate readers (such as, FLIPRTM, FDSS or BMG NovoStarTM) has a cooled CCD camera imaging system which collects the signal from each well of a microplate (both 96 and 384-well) simultaneously. These plate readers can read at sub-second intervals, which enables the kinetics of the response to be captured, and has an integrated pipettor that may be programmed for successive liquid additions. Beside their robust applications for GPCR targets, our Screen QuestTM Fluo-8 Calcium Assay Kits can be also used for characterizing calcium ion channels and screening calcium ion channel-targeted compounds.

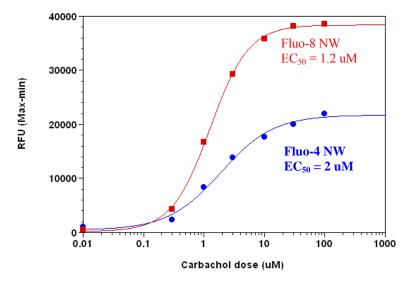


Figure 2. Carbachol Dose Response in HEK-293 cells measured with Screen QuestTM Fluo-8 NW Assay kit and Fluo-4 NW Assay Kit. HEK-293 cells were seeded overnight at 40,000 cells per $100~\mu L$ per well in a 96-well black wall/clear bottom costar plate. The growth medium was removed, and the cells were incubated with $100~\mu L$ of the Screen QuestTM Fluo 8-NW calcium assay kit, or Fluo-4 NW kit (according to the manufacture's instructions) for 1 hour at room temperature. Carbachol ($25\mu L$) well) was added by NOVOstar (BMG LabTech) to achieve the final indicated concentrations. The EC₅₀ of Fluo-8 NW is about 1.2 uM.

Compared to other commercial calcium assay kits that either based on either on Fluo-3 or Fluo-4, our Screen Quest™ Calcium Assay Kits have the following advantages for HTS applications:

- Broad Applications: work with both GPCR and calcium channel targets.
- Convenient Spectral Wavelengths: maximum excitation @ ~490 nm; maximum emission @ ~514 nm.
- Faster Dye Loading: dye loading at room temperature (rather than 37 °C required for Fluo-4 AM).
- No Wash Required and No Quencher Interference with Your Targets.
- Robust Performance: enable calcium assays that are impossible with Fluo-4 AM or Fluo-3 AM.
- Strongest Signal Intensity: 2 times brighter than Fluo-4 AM; 4 times brighter than Fluo-3 AM.

V. Conclusions:

Because of the importance of Ca²⁺ in biology, numerous techniques/methods for analyzing the mechanisms of cellular and/or subcellular Ca²⁺ activity have been established. Unfortunately, however, there is no one best technique/method with which one can measure Ca²⁺. Although each method for analyzing Ca²⁺activity has certain advantages over the others, each also suffers drawbacks. With the outstanding properties described above, we believe that Quest Fluo-8TM calcium detection reagents and Screen QuestTM Fluo-8NW Calcium Assay Kits provide

Ordering: <u>sales@abdbioquest.com</u>; 800-990-8053 or 408-733-1055

new powerful tools for intracellular calcium analysis and monitoring in a variety of biological systems in coupling with the rapid advance in fluorescence instrumentation.

As might have been predicted, the interests of many researchers shifted from Ca²⁺ analysis at the cellular level to that of the subcellular level. It has been found that Ca²⁺ is not even distributed throughout the whole cell and that intracellular heterogeneity of Ca²⁺ (such as Ca²⁺ waves and Ca²⁺ sparks) is observed in a variety of cells (e.g., oocyte, heart muscle cell, hepatocyte, and exocrine cell). With the advent of the confocal laser scanning microscope (CLSM) in the 1980s and advanced microplate readers in 2000s (such as FLIPR, FDSS and NOVOStar dedicated for intracellular Ca²⁺ detections), measurement of intracellular Ca²⁺ has accelerated significantly. Confocal laser scanning microscopy, and more recently multiphoton microscopy, allows the precise spatial and temporal analysis of intracellular Ca²⁺ activity at the subcellular level in addition to measurement of its concentration.

VI. Product List

Cat#	Product Name	Unit Size
21080	Quest Fluo-8™ AM *Cell-permeable*	1 mg
21081	Quest Fluo-8 TM , AM *Cell-permeable*	5x50 μg
21082	Quest Fluo-8 TM , AM *Cell-permeable*	10x50 μg
21083	Quest Fluo-8 TM , AM *Cell-permeable*	20x50 μg
21088	Quest Fluo-8 TM , sodium salt	10x50 μg
21090	Quest Fluo-8H™, AM *Cell-permeable*	1 mg
21091	Quest Fluo-8H™, AM *Cell-permeable*	10x50 μg
21095	Quest Fluo-8H™, sodium salt	10x50 μg
21096	Quest Fluo-8L [™] , AM *Cell-permeable*	1 mg
21097	Quest Fluo-8L™, AM *Cell-permeable*	10x50 μg
21098	Quest Fluo-8L™, sodium salt	10x50 μg
36307	Screen Quest™ Fluo-8 NW Calcium Assay Kit *Medium Removal*	1 Plate
36308	Screen Quest™ Fluo-8 NW Calcium Assay Kit *Medium Removal*	10 Plates
36309	Screen Quest™ Fluo-8 NW Calcium Assay Kit *Medium Removal*	100 Plates
36314	Screen Quest [™] Fluo-8 NW Calcium Assay Kit *1% FBS Growth Medium*	1 Plate
36315	Screen Quest [™] Fluo-8 NW Calcium Assay Kit *1% FBS Growth Medium *	10 Plates
36316	Screen Quest [™] Fluo-8 NW Calcium Assay Kit *1% FBS Growth Medium*	100 Plates

VII. References

- 1. Martin VV, Beierlein M, Morgan JL, Rothe A, Gee KR. (2004) Novel fluo-4 analogs for fluorescent calcium measurements. Cell Calcium, 36, 509.
- 2. do Ceu Monteiro M, Sansonetty F, Goncalves MJ, O'Connor JE. (1999) Flow cytometric kinetic assay of calcium mobilization in whole blood platelets using Fluo-3 and CD41. Cytometry, 35, 302.
- 3. Su ZL, Li N, Sun YR, Yang J, Wang IM, Jiang SC. (1998) [Monitoring calcium in outer hair cells with confocal microscopy and fluorescence ratios of fluo-3 and fura-red]. Shi Yan Sheng Wu Xue Bao, 31, 323.
- 4. Perez-Terzic C, Stehno-Bittel L, Clapham DE. (1997) Nucleoplasmic and cytoplasmic differences in the fluorescence properties of the calcium indicator Fluo-3. Cell Calcium, 21, 275.
- 5. Tretyn A, Kado RT, Kendrick RE. (1997) Loading and localization of Fluo-3 and Fluo-3/AM calcium indicators in sinapis alba root tissue. Folia Histochem Cytobiol, 35, 41.
- 6. Greimers R, Trebak M, Moutschen M, Jacobs N, Boniver J. (1996) Improved four-color flow cytometry method using fluo-3 and triple immunofluorescence for analysis of intracellular calcium ion ([Ca2+]i) fluxes among mouse lymph node B- and T-lymphocyte subsets. Cytometry, 23, 205.
- 7. Bailey JL, Storey BT. (1994) Calcium influx into mouse spermatozoa activated by solubilized mouse zona pellucida, monitored with the calcium fluorescent indicator, fluo-3. Inhibition of the influx by three inhibitors of the zona pellucida induced acrosome reaction: tyrphostin A48, pertussis toxin, and 3-quinuclidinyl benzilate. Mol Reprod Dev, 39, 297.

Ordering: sales@abdbioquest.com; 800-990-8053 or 408-733-1055