



Code No.KAL-KH001-04

For research use only

# Advanced Glycation End Products (AGEs) Anti AGEs Monoclonal Antibody (Clone No. 6D12) FITC conjugated

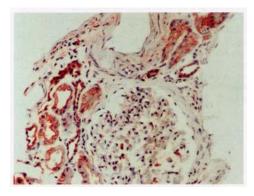
Reaction of protein amino groups with glucose leads, through the early products such as a Schiff base and Amadori rearrangement products, to the formation of advanced glycation end products (AGEs). Recent immunological studies using anti-AGEs antibody (6D12) demonstrated the presence of AGEs-modified proteins in several human tissues: ( i ) human lens (nondiabetic and noncataractous), (ii) renal proximal tubules in patients with diabetic nephropathy and chronic renal failure, (iii) diabetic retina, (iv) peripheral nerves of diabetic neuropathy, ( v ) atherosclerotic lesions of arterial walls, (vi)  $\beta$  2-microglobulin forming amyloid fibrils in patients with hemodialysis-related amyloidosis, (vii) senile plaques of patients with Alzheimer's disease, (viii) the peritoneum of CAPD patients, (ix) skin elastin in actinic elastosis, and ( x ) ceriod/lipofuscin deposits. These results suggest a potential role of AGEs-modification in normal aging as well as age-enhanced disease processes. This antibody named as 6D12 has been used to demonstrate AGEs-modified proteins in these human tissues, indicating potential usefulness of this antibody for histochemical identification and biochemical quantification of AGEs-modified proteins.

Package Size 10µg (40µL/vial)

Format Mouse monoclonal antibody, FITC conjugated 0.25 mg/mL Buffer Block Ace as a stabilizer, containing 0.1%Proclin as bacteriostat

Storage Store below −20°C

Once thawed, store at 4°C. Repeated freeze-thaw cycles should be avoided.


Clone No. 6D12 Subclass IgG1

Purification Method The splenic lymphocytes from BALB/c mouse, immunized with AGEs-BSA were

fused to myeloma P3U1 cells. The hybrid cells were screened, and the cell line (6D12) with positive reaction to AGEs-human serum albumin but negative to BSA was selected through successive subclonings and grown in ascitic fluid of BALB/c mouse, from which the anti-AGEs antibody was purified by Protein G affinity

chromatography (Reference No.1) and conjugated.

Working dilution for immunohistochemistry:  $2\mu g$  /mL; for ELISA: 0.1- $0.5\mu g$  /mL; for WB: 0.25- $5\mu g$  /mL



Immunohistochemical staining of renal proximal tubules and glomeruli in patients with diabetic nephropathy, using anti-AGEs antibody 6D12

Yamada, K. et al,.

Clinical nephrology, Vol.42, 354-361, 1994



Immunohistochemical staining of th eary stage of human athrosclerotic lesions of the aorta with anti-AGEs antibody 6D12.

Kume, S. et al

American Journal of Pathology, Vol.147, 654-667, 1995





Code No.KAL-KH001-04

## Advanced Glycation End Products (AGEs) Anti AGEs Monoclonal Antibody (Clone No. 6D12) FITC conjugated

#### [Specificity]

The initial study (Ref. 1) revealed that 6D12 does not recognize early products (Schiff base and Amadori products), but shows a positive reaction to AGEs-samples obtained either from proteins, lysine derivatives or monoamino-carboxylic acids, indicating the immunospecificity to a common structure among AGEs-structures. The subsequent study (Ref. 10) revealed of 6D12 is an N <sup>ε</sup> - carboxymethyllysine(CML)-protein adduct.

## [Reference]

1. Horiuchi, S.et al.: Immunochemical approach to characterize advanced glycation end products of the Maillard reaction; Evidence for the presence of a common structure. J. Biol. Chem. 266: 7329, 1991. 2. Araki, N. et al.: Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J. Biol. Chem. 267: 10211, 1992. 3. Miyata, T. et al.: β<sub>2</sub>-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J. Clin. Invest. 92: 1243, 1993. 4. Yamada, K et al.: Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin. Nephrol. 42: 354, 1994. 5. Kume, S. et al.: Immunohistochemical and ultrasturactural detection of advanced glycation end products in atherosclerotic lesions of human aorta using a novel specific monoclonal antibody. Am. J. Pathol. 147: 654, 1995. 6. Makino, H. et al.: Ultrastructure of nonenzymatically grycated mesangial matrix in diabetic nephropathy. Kidney International 48: 517, 1995. 7. Mori, T. et al.: Localization of advanced grycation end products of Maillard reaction in bovine tissues and their endocytosis by macrophage scavenger receptors. Exp. Molec. Pathol. 63:135, 1995 8. Miyata, T. et al.: Identification of pentosidine as a native structure for advanced glycation end products in  $\beta$  2-Microglobulin forming amyloid fibrils in patients with dialysis-related amyloidsis. Proc. Natl. Acad. Sci. USA. 93: 2353, 1996 9. Kimura, T. et al.: Accumulation of advanced glycation end products of the Maillard reaction with age in human hippocampal neurons. Neurosci. Lett. 208: 53,1996. 10. Ikeda, K. et al.: N<sup>\(\epsilon\)</sup> -(carboxymethyl) lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35: 8075,1996. 11. Horiuchi, S. et al.: AGE modified proteins and their potential relevance to atherosclerosis. Trends Cardiovasc. Med. 6: 163, 1996. 12. Hammes, H-P et al.: Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab. Invest. 75: 325, 1996. 13. Kimura, T. et al.: Identification of advanced grycation end products of the Maillard reaction in Pick's disease. Neurosci. Lett. 219: 95, 1996. 14. Nakayama, M. et al.: immunohistochemical detection of advanced grycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Intentional 51: 182, 1997. 15. Mizutani, K. et al.: Photo-enhanced modification of human skin elastin in actinic elastosis by N<sup>ε</sup> - (carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J. Invest. Dermatol. 108: 797, 1997. 16. Murata, T. et al.: The relationship between expression of advanced glycation end products and vascular endothelial growth factor in human diabetic retinas. Diabetologia 40: 764, 1997. 17. Sugimoto, K. et al.: Localization in human diabetic peripheral nerve of N<sup>ε</sup>carboxymethyllysine-protein adducts, one of advanced glycation endproducts. Diabetologia 40: 1380, 1997. 18. Shimokawa, I. Et al.: Advanced glycosylation end-products in adrenal lipofuscin. J. Gerontol. 51A: B49, 1998. 19. Yoshida, S. et al.: Immunohistochemical study of human advanced glycation end-products and growth factors in cardiac tissues of patients on maintenance dialysis and with kidney transplantation. Clin. Nephrol.49: 273, 1998. 20. Matsuse, S. et al.: immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J. Clin. Pathol, 51:515,1998

Distributor



TOYO 2CHOME, KOTO-KU, TOKYO, 135-0016, JAPAN

http://www.cosmobio.co.jp e-mail: export@cosmobio.co.jp





Code No.KH001-04

研究用試薬

## Advanced Glycation End Products (AGEs) 抗 AGEs モノクローナル抗体(Clone No. 6D12) FITC conjugated

AGEs(Advanced Glycation End Products)は、タンパク質の非酵素的糖付加反応(メイラード反応)により、シッフ塩基、アマドリ転移生成物(前期生成物)を経由し、脱水、酸化、縮合などの複雑な反応を受けて形成される最終生成物です。AGEs は、蛍光・褐色・分子架橋形成などの特徴の他、AGEs 受容体により認識されるという生化学的特性を有しています。

近年の抗 AGEs 抗体による解析の結果、(1)ヒト水晶体(加齢に伴う増加)、(2)糖尿病性腎症や慢性腎不全患者の腎近位尿細管、(3)糖尿病患者の網膜、(4)糖尿病性神経障害患者の末梢神経、(5)粥状動脈硬化病変部、(6)透析性アミロイドーシスの $\beta$ 2-マイクログロブリン、(7)アルツハイマー病患者の老人斑、(8) CAPD 患者の腹膜、(9)弾力線維症の皮膚のエラスチン、(10)セロイド/リポフスチン沈着部位などに AGEs が蓄積することが分かってきました。これらの知見は、老化自体や老化に伴う慢性疾患に AGEs が深く関与していることを示唆しています。

本抗体(6D12)は、加齢に伴う慢性疾患の研究に非常に有用であると思われます。

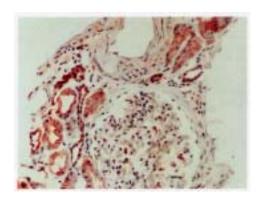
容量 10μg (40μL/vial)

形状 マウスモノクローナル抗体 FITC 標識 0.25mg/mL、凍結品 バッファー PBS [2%ブロックエース(安定化蛋白)、0.1% proclin 含有]

保管方法 -20℃以下

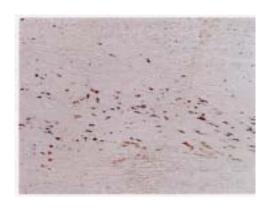
抗体を低濃度で冷蔵保管されますと、失活する恐れがあります。

融解後は4℃で保存し、お早めにご使用下さい。 凍結融解を繰り返すことは避けてください。


クローン番号6D12サブクラスIgG1

製造方法 AGEs-BSA で免疫した BALB/c マウスの脾臓細胞とマウスミエローマ P3U1 を融合して

得たハイブリドーマを BALB/c マウス腹腔内で増殖させ、腹水を採取。 採取した腹水より Protein G アフィニティーカラムにて精製後、標識。


使用濃度 組織染色:2μg/mL

ELISA:  $0.1 \sim 0.5 \mu \text{g/mL}$ 



糖尿病性腎症患者の腎近位尿細管および糸球体 Yamada, K. et al,.

Clinical nephrology, Vol.42, 354-361, 1994



粥状動脈硬化 初期病変

Kume, S. et al,

American Journal of Pathology, Vol.147, 654-667, 1995





Code No.KH001-04

## Advanced Glycation End Products (AGEs) 抗 AGEs モノクローナル抗体(Clone No. 6D12) FITC conjugated

## 【特異性】

6D12 は反応前期生成物(シッフ塩基やアマドリ転移生成物)には反応しませんが、タンパク質やリジン誘導体またはモノカルボン酸から生じた AGEs には反応性を示すことが確認されています(参考文献 1)。

6D12 のエピトープはタンパク質中のリジンが修飾されて生じる N-カルボキシメチルリジン(CML)であることが示されました(参考文献 **10**)。

## 【参考文献】

1. Horiuchi, S.et al.: Immunochemical approach to characterize advanced glycation end products of the Maillard reaction; Evidence for the presence of a common structure. J. Biol. Chem. 266: 7329, 1991. 2. Araki, N. et al.: Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J. Biol. Chem. 267: 10211, 1992. 3. Miyata, T. et al.: β<sub>2</sub>-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J. Clin. Invest. 92: 1243, 1993. 4. Yamada, K et al.: Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin. Nephrol. 42: 354, 1994. 5. Kume, S. et al.: Immunohistochemical and ultrasturactural detection of advanced glycation end products in atherosclerotic lesions of human agrta using a novel specific monoclonal antibody, Am. J. Pathol. 147: 654, 1995. 6. Makino, H. et al.: Ultrastructure of nonenzymatically grycated mesangial matrix in diabetic nephropathy. Kidney International 48: 517, 1995. 7. Mori, T. et al.: Localization of advanced grycation end products of Maillard reaction in bovine tissues and their endocytosis by macrophage scavenger receptors. Exp. Molec. Pathol. 63:135, 1995 8. Miyata, T. et al.: Identification of pentosidine as a native structure for advanced glycation end products in  $\beta$ <sub>2</sub>-Microglobulin forming amyloid fibrils in patients with dialysis-related amyloidsis. Proc. Natl. Acad. Sci. USA. 93: 2353, 1996 9. Kimura, T. et al.: Accumulation of advanced glycation end products of the Maillard reaction with age in human hippocampal neurons. Neurosci. Lett. 208: 53,1996. 10. Ikeda, K. et al.: N ε-(carboxymethyl) lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35: 8075,1996. 11. Horiuchi, S. et al.: AGE modified proteins and their potential relevance to atherosclerosis. Trends Cardiovasc. Med. 6: 163, 1996. 12. Hammes, H-P et al.: Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab. Invest. 75: 325, 1996. 13. Kimura, T. et al.: Identification of advanced grycation end products of the Maillard reaction in Pick's disease. Neurosci. Lett. 219: 95, 1996. 14. Nakayama, M. et al.: immunohistochemical detection of advanced grycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Intentional 51: 182, 1997. 15. Mizutani, K. et al.: Photo-enhanced modification of human skin elastin in actinic elastosis by N<sup>ε</sup> - (carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J. Invest. Dermatol. 108: 797, 1997. 16. Murata, T. et al.: The relationship between expression of advanced glycation end products and vascular endothelial growth factor in human diabetic retinas. Diabetologia 40: 764, 1997. 17. Sugimoto, K. et al.: Localization in human diabetic peripheral nerve of N <sup>ε</sup>carboxymethyllysine-protein adducts, one of advanced glycation endproducts. Diabetologia 40: 1380, 1997. 18. Shimokawa, I. Et al.: Advanced glycosylation end-products in adrenal lipofuscin. J. Gerontol. 51A: B49, 1998. 19. Yoshida, S. et al.: Immunohistochemical study of human advanced glycation end-products and growth factors in cardiac tissues of patients on maintenance dialysis and with kidney transplantation. Clin. Nephrol.49: 273, 1998. 20. Matsuse, S. et al.: immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J. Clin. Pathol, 51:515,1998



〒135-0016 東京都江東区東陽 2-2-20 東陽駅前ビル

URL: http://www.cosmobio.co.jp/

● 営業部(お問い合わせ)

TEL: (03) 5632-9610 FAX: (03) 5632-9619

TEL: (03) 5632-9620