HBL
Human Melanoma Cell

Type: Established Human Cell Line.
Category: Cancer, melanoma.
Lifespan: Infinite (theoretically).
Origin: Cells isolated from inguinal node metastases. Evolution during 12 years localized in the nail.
Cells: Cells are anchorage-dependant
Gender: Female
Culture medium: Preferred culture medium is HAM's F10

Supply as frozen cells (dry ice transport) or living cells in 25 cm² flasks.

FROZEN CELLS

PRECAUTION upon reception
The vial containing the frozen cells should be placed in the gaseous phase of liquid nitrogen as fast as possible.
If liquid nitrogen (fluid) enters the vial, it may explode when it is brought later to room temperature.

CELL CULTURE
- Take out the vial from liquid nitrogen and visually verify the absence of liquid inside the vial - in that case, dip the vial up to 1/3 of its height in a liquid nitrogen bath and wait until the complete evaporation of the liquid (about 20 min).
- Bring the vial to 37°C in a water bath as fast as possible, taking care not to let any fluid enter inside.
 Tip: open the vial under a laminar flow and thaw the content by adding a suitable quantity of culture medium already brought to 37°C.
- The vial content should be put in 50ml of the adequate culture medium and transferred onto a 175 cm² culture flask. Incubate at 37°C, 5% CO₂ and 100% humidity.
- 12 hours later, remove the culture medium from the flask and keep it. Replace with 25 ml of fresh medium already brought to 37°C.
- The removed culture medium is then briefly centrifuged and the supernatant discarded. The cell pellet is carefully resuspended in 15 ml of fresh medium and the whole transferred to a 75 cm² culture flask.

LIVING CELLS

Upon reception (because of the transportation, the cells can detached from the bottom of the flaks) put the flask 24 hours in an incubator and remove excess culture medium (can be reused for further culturing). The cells can be trypsinized and transferred in other flasks under sterile conditions.
References:

Anti-inflammatory and anti-invasive effects of alpha-melanocyte-stimulating hormone in human melanoma cells.

Loss-of-function variants of the human melanocortin-1 receptor gene in melanoma cells define structural determinants of receptor function.

Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor.

The Degree of Pigmentation Modulates the Radiosensitivity of Human Melanoma Cells

Expression of the MC1 receptor gene in normal and malignant human melanocytes. A semiquantitative RT-PCR study.

Comparison of high performance liquid chromatography and stereological image analysis for the quantitation of eumelanins and pheomelanins in melanoma cells.

In vitro cytotoxic effect of difluoromethylomithine increased nonspecifically by peptide coupling.

TRP-1 expression correlates with eumelanogenesis in human pigment cells in culture.

Glutathione depletion increases tyrosinase activity in human melanoma cells.

Synthesis and cytotoxic properties of new N-substituted 4-aminophenol derivatives with a potential as antimelanoma agents.
Partial characterization of IR-alpha-MSH peptides found in melanoma tumors.