BACKGROUND

The Alzheimer amyloid precursor protein (APP) is an integral membrane protein expressed in many tissues and concentrated in the synapses of neurons. Its primary function is not known, though it has been implicated as a regulator of synapse formation and neural plasticity. APP is best known and most commonly studied as the precursor molecule whose proteolysis generates amyloid beta (Aβ), a 39- to 42-amino acid peptide whose amyloid fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer’s disease patients. Isoform APP695 lacking the protease inhibitor domain is the predominant form in neuronal tissues. An antibody (named AN2) against the N-terminus domain of human APP (aa 18-38) was raised in rabbit.

Product type
Primary antibodies

Host
Rabbit

Source
Serum

Form
Antiserum added with 0.05% sodium azide

Volume
100µL

Concentration

Immunogen
Synthetic peptide corresponding to the N-terminus (aa 18-38) of human APP

Application notes
1. Western blotting (dilution: 1/3,000-1/1,000)
2. Immunocytochemistry (dilution: 1/1,000-1/500)

Other applications have not been tested.

Data Link
Optimal dilutions/concentrations should be determined by the end user.

UniProtKB/Swiss-Prot [P05067](https://www.uniprot.org/uniprot/P05067) (A4_HUMAN)

Reactivity
Specific to human, mouse and rat

Storage
Shipped at 4°C and stored at -20°C

References

Related product
#74-104EX anti-APP (C-terminus) antibody

www.cosmobio.com
Anti-Amyloid Precursor Protein (APP N-terminus) antibody, rabbit serum (AN1)

#74-108EX anti-APP (C-terminus of the caspase3-cleaved APP) antibody
#74-110EX anti-APPΔ31 (specific to C-terminal APPΔ31) antibody

Fig. 1 Western blot analysis of APP.
Human NT2 neurons infected with adenovirus expressing β-galactosidase (lane 1) or wild-type APP (lane 2) were analyzed by Western blotting using this antibody. Wild-type APP was abundantly expressed in NT2 cells (ref.3).

Fig. 2 Immunocytochemistry for APP.
Mouse dorsal root ganglion cells were treated with this antibody to examine neuronal APP expression (ref.4).