

Highly Purified Porphyromonas gingivalis LPS

Product	Cat.#	Price/100ug
P.gingivalis - 1690	7000	\$95
P.gingivalis - 1435/1449	7010	\$95

Form/dry weight: lyophilized/100 μg

Reconstitution: highly pure dH₂0, endotoxin-free

INTRODUCTION

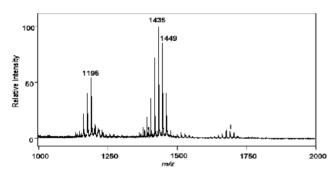
Porphyromonas gingivalis (Pg), an etiologic agent for periodontitis, causes a highly unusual innate host response. Two different LPSs are available with differing biologic activity. One fraction, designated Pg_{1690} , purified using a phenol method, yields a negative mass ion of 1690 which represents a penta-acyl lipid A. This fraction is an agonist for human monocytes and HUVEC. Another fraction, designated $Pg_{1435/1449}$, obtained through the cold magnesium chloride purification method, yields lipid A species with mass ions of 1435/1450 representing tetra-acyl forms. This preparation is a weak agonist for macrophages, does not stimulate HUVEC and is an antagonist of Pg_{1690} and E.coli LPS stimulation of these cells.

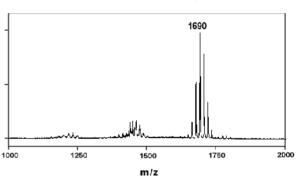
BIOCHEMICAL ANALYSIS

Purity

	Pg ₁₆₉₀	Pg _{1435/1449}
DNA content	1%	1%
Protein content	1.5%	1.05%

Gas chromatographic/mass spectroscopy (GC/MS) of LPS fatty acids.

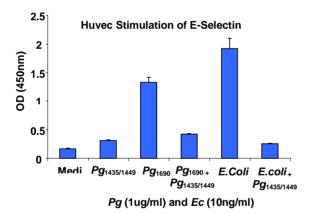

 Pg_{1690} and $Pg_{1435/1450}$ LPS samples were analyzed by their trimethylsilyl ethers after transmethylation with N,O,-bis(trimethylsilyl) trifluoroacetimide (BSTFA) containing 1% trimethylchlorosilane (TMCS). The fatty acids are accounted for along with trace amounts of C14:0 and C18:0. No other fatty acids nor phospholipid, glycolipid, or lipoprotein were detected.

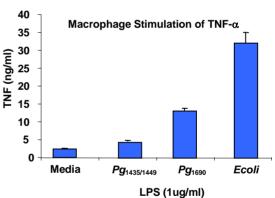

Mass Spectrometry

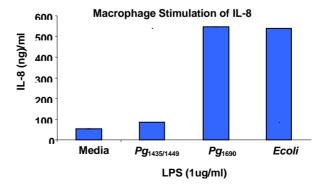
The deduced structure of the Lipid A moiety of Pg_{1690} and $Pg_{1435/1449}$ was analyzed by matrix assisted laser desorption ionization time of flight (MALDITOF). Pg_{1690} contains a negative mass ion of 1690, which represents a pentaacyl Lipid A. $Pg_{1435/1449}$ LPS contains 2 species of lipid A with mass ions of 1435/1449, representing tetra-acyl forms. A minor species of tria-acyl is also present with a negative mass of 1195.

MALDI-TOF analysis of purified Pg $_{\rm 1435/1450}\,LPS$

MALDI-TOF analysis of purified Pg₁₆₉₀ LPS







BIOLOGIC ACTIVITY

The biologic response of the purified LPS was tested for E-Selectin expression on HUVEC cells (Astarte HUVEC/E-Selectin Kit #2016). These cells normally produce E-selectin in response to *E.coli* LPS. Purified Pg_{1690} LPS is a potent agonist for E-selectin expression while $Pg_{1435/1449}$ is a weak agonist. In addition, $Pg_{1435/1449}$ is able to antagonize Pg_{1690} stimulation of E-Selectin at 1:1 and *E.coli* LPS at 100:1. With respect to myeloid cells, Pg_{1690} is a more potent agonist of TNF- α and IL-8 expression by macrophages cells compared to $Pg_{1435/1449}$.

REFERENCES

- 1. Somerville JE Jr, Cassiano L, Bainbridge B, Cunningham MD, Darveau RP. A novel *Escherichia coli* lipid A mutant that produces an anti-inflammatory lipopolysaccharide. *J Clin Invest* 1996;97:359-365.
- 2. Darveau RP, Cunningham MD, Bailey T, et al. Ability of bacteria associated with chronic inflammatory disease to stimulate E-selectin expression and promote neutrophil adhesion. *Infect Immun* 1995;63:1311-1317.
- 3. Reife, RA, et al. *Porphyromonas gingivalis* lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition. Cellular Microbiology (2006)8 (5), 857–868.
- 4. Coats, S.R., Reife, R.A., Bainbridge, B.W., Pham, T.T.T., Darveau, R.P. *P. gingivalis* LPS antagonizes *E. coli* LPS at TLR 4 in human endothelial cells. *Infect Immun* 71(12):6799-6807 (2003).